【題目】如圖,AB是⊙O的直徑,BCAB于點(diǎn)B,連接OC交⊙O于點(diǎn)E,弦ADOC,弦DFAB于點(diǎn)G

1)求證:點(diǎn)E的中點(diǎn);

2)求證:CD是⊙O的切線;

3)若sinBAD=,⊙O的半徑為5,求DF的長(zhǎng).

【答案】1)見(jiàn)解析 (2)見(jiàn)解析 (3

【解析】

(1) 連接OD,根據(jù)平行的性質(zhì)得到∠A=∠COB,再證明∠DOC=∠BOC即可得到答案;

(2)先根據(jù)題意的大△COD≌△COB,再根據(jù)全等三角形的性質(zhì)以及BCAB于點(diǎn)B即可證明;

(3)先根據(jù)sinBAD=,設(shè)DG=4x,AD=5x再根據(jù)勾股定理求解即可得到答案;

1)證明:連接OD,

ADOC

∴ ∠A=∠COB(兩直線平行,同位角相等),

又∵∠A=BOD(同弧圓心角等于圓周角的2倍),

∴∠BOC=BOD

∴∠DOC=∠BOC;

,則點(diǎn)E的中點(diǎn);

2)證明:如圖所示:

由(1)知∠DOE=∠BOE,

CO=CO,OD=OB,

∴ △COD≌△COB;

∴∠CDO=∠B;

又∵BCAB,

∴ ∠CDO=∠B=90°;

CD是⊙O的切線;

3)解:在△ADG中,

sinBAD=,

設(shè)DG=4x,AD=5x

DFAB,

AG=3x;

又∵⊙O的半徑為5

OG=53x;

OD2=DG2+OG2

,

x1= ,x2=0;(舍去)

DF=2DG=2×4x=8x=;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地為了促進(jìn)旅游業(yè)的發(fā)展,要在如圖所示的三條公路,,圍成的一塊地上修建一個(gè)度假村,要使這個(gè)度假村到,兩條公路的距離相等,且到,兩地的距離相等,下列選址方法繪圖描述正確的是(

A.畫(huà)的平分線,再畫(huà)線段的垂直平分線,兩線的交點(diǎn)符合選址條件

B.先畫(huà)的平分線,再畫(huà)線段的垂直平分線,三線的交點(diǎn)符合選址條件

C.畫(huà)三個(gè)角,三個(gè)角的平分線,交點(diǎn)即為所求

D.畫(huà),,三條線段的垂直平分線,交點(diǎn)即為所求

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】墊球是排球隊(duì)常規(guī)訓(xùn)練的重要項(xiàng)目之一.下列圖表中的數(shù)據(jù)是甲,乙,丙三名校排球隊(duì)員每人10次墊球測(cè)試的成績(jī).測(cè)試規(guī)則為每次連續(xù)接球10個(gè),每墊球到位1個(gè)記1.

(1)若運(yùn)動(dòng)員丙測(cè)試成績(jī)的平均數(shù)和眾數(shù)都是7,則成績(jī)統(tǒng)計(jì)表中a= ,b= ;

(2)若在三名隊(duì)員中選擇一位墊球成績(jī)優(yōu)秀且較為穩(wěn)定的同學(xué)作為排球比賽的自由人,你認(rèn)為選誰(shuí)更合適?請(qǐng)用你所學(xué)過(guò)的統(tǒng)計(jì)量加以分析說(shuō)明(參考數(shù)據(jù):三人成績(jī)的方差分別為,)

(3)訓(xùn)練期間甲、乙、丙三人之間進(jìn)行隨機(jī)傳球游戲,先由甲傳出球,經(jīng)過(guò)三次傳球,球回到甲手中的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線ABx的正半軸交于點(diǎn)B,且B10),與y的正半軸交于點(diǎn)A,以線段AB為邊,在第一象限內(nèi)作正方形ABCD,點(diǎn)C落在雙曲線yk≠0)上,將正方形ABCD沿x軸負(fù)方向平移2個(gè)單位長(zhǎng)度,使點(diǎn)D恰好落在雙曲線yk≠0)上的點(diǎn)D1處,則k_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,G為邊AB中點(diǎn),∠AGCαQ為線段BG上一動(dòng)點(diǎn)(不與點(diǎn)B重合),點(diǎn)P在中線CG上,連接PA,PQ,記BQkGP

1)若α60°,k1,

①當(dāng)BQBG時(shí),求∠PAG的度數(shù).

②寫(xiě)出線段PA、PQ的數(shù)量關(guān)系,并說(shuō)明理由.

2)當(dāng)α45°時(shí).探究是否存在常數(shù)k,使得②中的結(jié)論仍成立?若存在,寫(xiě)出k的值并證明;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】20204月是我國(guó)第32個(gè)愛(ài)國(guó)衛(wèi)生月.某校九年級(jí)通過(guò)網(wǎng)課舉行了主題為防疫有我,愛(ài)衛(wèi)同行的知識(shí)競(jìng)賽活動(dòng).為了解全年級(jí)500名學(xué)生此次競(jìng)賽成績(jī)(百分制)的情況,隨機(jī)抽取了部分參賽學(xué)生的成績(jī),整理并繪制出如下不完整的統(tǒng)計(jì)表(表1)和統(tǒng)計(jì)圖(如圖).請(qǐng)根據(jù)圖表信息解答以下問(wèn)題:

1)本次調(diào)查一共隨機(jī)抽取了____個(gè)參賽學(xué)生的成績(jī);

2)表1a__;

3)所抽取的參賽學(xué)生的成績(jī)的中位數(shù)落在的“組別”__;

4)統(tǒng)計(jì)圖中B組所占的百分比是_______;

5)請(qǐng)你估計(jì),該校九年級(jí)競(jìng)賽成績(jī)達(dá)到80分以上(含80分)的學(xué)生人數(shù).

1 知識(shí)競(jìng)賽成績(jī)分組統(tǒng)計(jì)表

組別

分?jǐn)?shù)/

頻數(shù)

A

60≤x70

a

B

70≤x80

10

C

80≤x90

14

D

90≤x100

18

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是(

A. 一組數(shù)據(jù)2,2,3,4,這組數(shù)據(jù)的中位數(shù)是2

B. 了解一批燈泡的使用壽命的情況,適合抽樣調(diào)查

C. 小明的三次數(shù)學(xué)成績(jī)是126分,130分,136分,則小明這三次成績(jī)的平均數(shù)是131

D. 某日最高氣溫是,最低氣溫是,則該日氣溫的極差是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:△ABC是等邊三角形,點(diǎn)D是△ABC(包含邊界)平面內(nèi)一點(diǎn),連接CD,將線段CDC逆時(shí)針旋轉(zhuǎn)60°得到線段CE,連接BE,DE,AD,并延長(zhǎng)ADBE于點(diǎn)P

1)觀察填空:當(dāng)點(diǎn)D在圖1所示的位置時(shí),填空:

①與△ACD全等的三角形是______

②∠APB的度數(shù)為______

2)猜想證明:在圖1中,猜想線段PD,PEPC之間有什么數(shù)量關(guān)系?并證明你的猜想.

3)拓展應(yīng)用:如圖2,當(dāng)△ABC邊長(zhǎng)為4,AD=2時(shí),請(qǐng)直接寫(xiě)出線段CE的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是邊長(zhǎng)為m的正方形,若AFm,EAB上一點(diǎn)且BE3,把△AEF沿著EF折疊,得到△A'EF,若△BA'E為直角三角形,則m的值為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案