【題目】某市計劃修建一條長60千米的地鐵,根據(jù)甲,乙兩個地鐵修建公司標(biāo)書數(shù)據(jù)發(fā)現(xiàn):甲,乙兩公司每天修建地鐵長度之比為35;甲公司單獨完成此項工程比乙公司單獨完成此項工程要多用240天.

1)求甲,乙兩個公司每天分別修建地鐵多少千米?

2)該市規(guī)定:該工程由甲,乙兩個公司輪流施工完成,工期不超過450天,且甲公司工作天數(shù)不少于乙公司工作天數(shù)的.設(shè)甲公司工作a天,乙公司工作b天.

①請求出ba的函數(shù)關(guān)系式及a的取值范圍;

②設(shè)完成此項工程的工期為W天,請求出W的最小值.

【答案】(1)甲公司每天修建地鐵 千米,乙公司每天修建地鐵千米;(2)①;②W最小值為440

【解析】

1)甲公司每天修千米,乙公司每天修千米,根據(jù)題意列分式方程解答即可;

2)①由題意得,再根據(jù)題意列不等式組即可求出的取值范圍;

②寫出、之間的關(guān)系式,再根據(jù)一次函數(shù)的性質(zhì)解答即可.

解:(1)設(shè)甲公司每天修千米,乙公司每天修千米,根據(jù)題意得,

,解得

經(jīng)檢驗,為原方程的根,

,

答:甲公司每天修建地鐵千米,乙公司每天修建地鐵千米;

2)①由題意得,

,

,

②由題意得,

,即,

,

的增大而增大,

時,最小值為440天.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等腰直角三角形,∠A=90°,BC=4.

1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,寫出各個頂點的坐標(biāo);

2)將△ABC向左平移5個單位,請在圖中畫出平移后的△A1B1C1;

3)將△A1B1C1繞點C1按逆時針旋轉(zhuǎn)90°,請在圖中畫出旋轉(zhuǎn)后的△A2B2C1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】爸爸和小芳駕車去郊外登山,欣賞美麗的達子香(興安杜鵑),到了山下,爸爸讓小芳先出發(fā)6min,然后他再追趕,待爸爸出發(fā)24min時,媽媽來電話,有急事,要求立即回去.于是爸爸和小芳馬上按原路下山返回(中間接電話所用時間不計),二人返回山下的時間相差4min,假設(shè)小芳和爸爸各自上、下山的速度是均勻的,登山過程中小芳和爸爸之間的距離s(單位:m)關(guān)于小芳出發(fā)時間t(單位:min)的函數(shù)圖象如圖,請結(jié)合圖象信息解答下列問題:

(1)小芳和爸爸上山時的速度各是多少?

(2)求出爸爸下山時CD段的函數(shù)解析式;

(3)因山勢特點所致,二人相距超過120m就互相看不見,求二人互相看不見的時間有多少分鐘?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過△ABC的三個頂點,其中點A(0,1,點B(﹣9,10,AC∥x軸,點P時直線AC下方拋物線上的動點.

(1求拋物線的解析式;(2過點P且與y軸平行的直線l與直線AB、AC分別交于點E、F,當(dāng)四邊形AECP的面積最大時,求點P的坐標(biāo);

(3當(dāng)點P為拋物線的頂點時,在直線AC上是否存在點Q,使得以C、P、Q為頂點的三角形與△ABC相似,若存在,求出點Q的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】湖南省作為全國第三批啟動高考綜合改革的省市之一,從2018年秋季入學(xué)的高中一年級學(xué)生開始實施高考綜合改革.深化高考綜合改革,承載著廣大考生的美好期盼,事關(guān)千家萬戶的切身利益,社會關(guān)注度高.為了了解我市某小區(qū)居民對此政策的關(guān)注程度,某數(shù)學(xué)興趣小組隨機采訪了該小區(qū)部分居民,根據(jù)采訪情況制作了如下統(tǒng)計圖表:

1)根據(jù)上述統(tǒng)計圖表,可得此次采訪的人數(shù)為___________,m=___________,n=___________.

2)根據(jù)以上信息補全圖中的條形統(tǒng)計圖.

3)請估計在該小區(qū)1500名居民中,高度關(guān)注新高考政策的有多少名.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB8,AD6,將矩形ABCD繞點A逆時針旋轉(zhuǎn)得到矩形AEFG

1)如圖1,若在旋轉(zhuǎn)過程中,點E落在對角線AC上,AF,EF分別交DC于點MN

①求證:MAMC;

②求MN的長;

2)如圖2,在旋轉(zhuǎn)過程中,若直線AE經(jīng)過線段BG的中點P,連接BE,GE,求BEG的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛出租車從甲地出發(fā),在一條東西走向的街道上往返行駛,每次行駛的路程(記向東為正),記錄如下表(,單位:):

1

2

3

4

1)說出這輛出租車每次行駛的方向.

2)這輛出租車共行駛了多少路程?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在ABC中,點E,F分別是BA,BC邊的中點,過點AADBCFE的延長線于點D,連接DB,DC

1)求證:四邊形ADFC是平行四邊形;

2)若∠BDC90°,求證:CD平分∠ACB;

3)在(2)的條件下,若BDDC6,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形紙片中,,把紙片沿直線折疊,點落在處,于點,若,則的面積為(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案