如圖,AB、CD為兩個建筑物,建筑物AB的高度為60米,從建筑物AB的頂點A點測得建筑物CD的頂點C點的俯角∠EAC為30°,測得建筑物CD的底部D點的俯角∠EAD為45°.

(1)求兩建筑物底部之間水平距離BD的長度;

(2)求建筑物CD的高度(結果保留根號).


       解:(1)根據(jù)題意得:BD∥AE,

∴∠ADB=∠EAD=45°,

∵∠ABD=90°,

∴∠BAD=∠ADB=45°,

∴BD=AB=60,

∴兩建筑物底部之間水平距離BD的長度為60米;

(2)延長AE、DC交于點F,根據(jù)題意得四邊形ABDF為正方形,

∴AF=BD=DF=60,

在Rt△AFC中,∠FAC=30°,

∴CF=AF•tan∠FAC=60×=20

又∵FD=60,

∴CD=60﹣20

∴建筑物CD的高度為(60﹣20)米.


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:


 

下面計算正確的是( 。

 

A.

3a﹣2a=1

B.

3a2+2a=5a3

C.

(2ab)3=6a3b3

D.

﹣a4•a4=﹣a8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,在梯形OABC中,OC∥AB,OA=CB,點O為坐標原點,且A(2,﹣3),C(0,2).

(1)求過點B的雙曲線的解析式;

(2)若將等腰梯形OABC向右平移5個單位,問平移后的點C是否落在(1)中的雙曲線上?并簡述理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


在函數(shù)y=中,自變量x的取值范圍是  

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,在正方形ABCD中,AC為對角線,點E在AB邊上,EF⊥AC于點F,連接EC,AF=3,△EFC的周長為12,則EC的長為  

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


2的相反數(shù)是(  )

    A.                       ﹣2 B.                       ﹣                            C.        D. 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,一艘海輪位于燈塔P的北偏東30°方向,距離燈塔80海里的A處,它沿正南方向航行一段時間后,到達位于燈塔P的南偏東45°方向上的B處,這時,海輪所在的B處與燈塔P的距離為(  )

    A.                       40海里                   B.                             40海里       C. 80海里   D. 40海里

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,拋物線y=ax2+bx+c(a≠0)的圖象過點M(﹣2,),頂點坐標為N(﹣1,),且與x軸交于A、B兩點,與y軸交于C點.

(1)求拋物線的解析式;

(2)點P為拋物線對稱軸上的動點,當△PBC為等腰三角形時,求點P的坐標;

(3)在直線AC上是否存在一點Q,使△QBM的周長最?若存在,求出Q點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


已知關于x的方程mx2﹣(m+2)x+2=0(m≠0).

(1)求證:方程總有兩個實數(shù)根;

(2)若方程的兩個實數(shù)根都是整數(shù),求正整數(shù)m的值.

查看答案和解析>>

同步練習冊答案