【題目】正方形OABC的邊長為4,對角線相交于點P,拋物線L經(jīng)過O、P、A三點,點E是正方形內(nèi)的拋物線上的動點.
(1)建立適當?shù)钠矫嬷苯亲鴺讼担?/span>
①直接寫出O、P、A三點坐標;
②求拋物線L的解析式;
(2)求△OAE與△OCE面積之和的最大值.
【答案】
(1)
解:以O(shè)點為原點,線段OA所在的直線為x軸,線段OC所在的直線為y軸建立直角坐標系,如圖所示.
①∵正方形OABC的邊長為4,對角線相交于點P,
∴點O的坐標為(0,0),點A的坐標為(4,0),點P的坐標為(2,2).
②設(shè)拋物線L的解析式為y=ax2+bx+c,
∵拋物線L經(jīng)過O、P、A三點,
∴有 ,
解得: ,
∴拋物線L的解析式為y=﹣ +2x
(2)
解:∵點E是正方形內(nèi)的拋物線上的動點,
∴設(shè)點E的坐標為(m,﹣ +2m)(0<m<4),
∴S△OAE+SOCE= OAyE+ OCxE=﹣m2+4m+2m=﹣(m﹣3)2+9,
∴當m=3時,△OAE與△OCE面積之和最大,最大值為9
【解析】(1)以O(shè)點為原點,線段OA所在的直線為x軸,線段OC所在的直線為y軸建立直角坐標系.①根據(jù)正方形的邊長結(jié)合正方形的性質(zhì)即可得出點O、P、A三點的坐標;②設(shè)拋物線L的解析式為y=ax2+bx+c,結(jié)合點O、P、A的坐標利用待定系數(shù)法即可求出拋物線的解析式;(2)由點E為正方形內(nèi)的拋物線上的動點,設(shè)出點E的坐標,結(jié)合三角形的面積公式找出S△OAE+SOCE關(guān)于m的函數(shù)解析式,根據(jù)二次函數(shù)的性質(zhì)即可得出結(jié)論.本題考查了待定系數(shù)法求函數(shù)解析式、正方形的性質(zhì)、三角形的面積公式以及二次函數(shù)的性質(zhì),解題的關(guān)鍵是:(1)建立直角坐標系.①根據(jù)正方形的性質(zhì)找出點的坐標;②利用待定系數(shù)法求函數(shù)解析式;(2)利用二次函數(shù)的性質(zhì)解決最值問題.本題屬于中檔題,難度不大,解決該題型題目時,建立直角坐標系,找出點的坐標,再結(jié)合點的坐標利用待定系數(shù)法求出函數(shù)解析式是關(guān)鍵.
【考點精析】關(guān)于本題考查的二次函數(shù)的性質(zhì)和三角形的面積,需要了解增減性:當a>0時,對稱軸左邊,y隨x增大而減小;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減;三角形的面積=1/2×底×高才能得出正確答案.
科目:初中數(shù)學 來源: 題型:
【題目】在太空種子種植體驗實踐活動中,為了解“宇番2號”番茄,某?萍夹〗M隨機調(diào)查60株番茄的掛果數(shù)量x(單位:個),并繪制如下不完整的統(tǒng)計圖表:
“宇番2號”番茄掛果數(shù)量統(tǒng)計表
掛果數(shù)量x(個) | 頻數(shù)(株) | 頻率 |
25≤x<35 | 6 | 0.1 |
35≤x<45 | 12 | 0.2 |
45≤x<55 | a | 0.25 |
55≤x<65 | 18 | b |
65≤x<75 | 9 | 0.15 |
請結(jié)合圖表中的信息解答下列問題:
(1)統(tǒng)計表中,a= , b=;
(2)將頻數(shù)分布直方圖補充完整;
(3)若繪制“番茄掛果數(shù)量扇形統(tǒng)計圖”,則掛果數(shù)量在“35≤x<45”所對應(yīng)扇形的圓心角度數(shù)為°;
(4)若所種植的“宇番2號”番茄有1000株,則可以估計掛果數(shù)量在“55≤x<65”范圍的番茄有株.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.點P在線段AB上以1cm/s的速度由點A向點B運動,同時,點Q在線段BD上由點B向點D運動.它們運動的時間為t(s).
(1)若點Q的運動速度與點P的運動速度相等,當t=1時,△ACP與△BPQ是否全等,請說明理由,并判斷此時線段PC和線段PQ的位置關(guān)系;
(2)如圖(2),將圖(1)中的“AC⊥AB,BD⊥AB”為改“∠CAB=∠DBA=60°”,其他條件不變.設(shè)點Q的運動速度為x cm/s,是否存在實數(shù)x,使得△ACP與△BPQ全等?若存在,求出相應(yīng)的x、t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD是△ABC的角平分線,DF⊥AB,垂足為F,DE=DG,△ADG和△AED的面積分別為40和28,則△EDF的面積為( 。
A. 12 B. 6 C. 7 D. 8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為4的正方形ABCD中,請畫出以A為一個頂點,另外兩個頂點在正方形ABCD的邊上,且含邊長為3的所有大小不同的等腰三角形.(要求:只要畫出示意圖,并在所畫等腰三角形長為3的邊上標注數(shù)字3)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在等邊三角形ABC中,點P在△ABC內(nèi),點Q在△ABC外,且∠ABP=∠ACQ, BP=CQ.
(1)求證:△ABP≌△ACQ;
(2)請判斷△APQ是什么形狀的三角形?試說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】深圳市政府計劃投資1.4萬億元實施東進戰(zhàn)略.為了解深圳市民對東進戰(zhàn)略的關(guān)注情況.某校數(shù)學興趣小組隨機采訪部分深圳市民,對采訪情況制作了統(tǒng)計圖表的一部分如下:
關(guān)注情況 | 頻數(shù) | 頻率 |
A.高度關(guān)注 | M | 0.1 |
B.一般關(guān)注 | 100 | 0.5 |
C.不關(guān)注 | 30 | N |
D.不知道 | 50 | 0.25 |
(1)根據(jù)上述統(tǒng)計圖可得此次采訪的人數(shù)為人,m= , n=
(2)根據(jù)以上信息補全條形統(tǒng)計圖;
(3)根據(jù)上述采訪結(jié)果,請估計在15000名深圳市民中,高度關(guān)注東進戰(zhàn)略的深圳市民約有人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點M為直線AB上一動點, 都是等邊三角形,連接BN
求證: ;
分別寫出點M在如圖2和圖3所示位置時,線段AB、BM、BN三者之間的數(shù)量關(guān)系不需證明;
如圖4,當時,證明: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c交x軸于點A(﹣3,0)和點B,交y軸于點C(0,3).
(1)求拋物線的函數(shù)表達式;
(2)若點P在拋物線上,且S△AOP=4SBOC , 求點P的坐標;
(3)如圖b,設(shè)點Q是線段AC上的一動點,作DQ⊥x軸,交拋物線于點D,求線段DQ長度的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com