如圖,的直徑,的弦,,的度數(shù)為(?? )

A??????????? B????????? C????????? D

 

【答案】

A

【解析】

試題分析:首先連接AD,由直徑所對(duì)的圓周角是直角,即可求得ADB=90°,由直角三角形的性質(zhì),求得A的度數(shù),又由在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,即可求得BCD的度數(shù).

連接AD,

ABO的直徑,

∴∠ADB=90°,

∵∠ABD=55°,

∴∠A=90°﹣ABD=35°,

∴∠BCD=A=35°

故選A

考點(diǎn):圓周角定理.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,⊙O的直徑AB=15cm,有一條定長(zhǎng)為9cm的動(dòng)弦CD沿弧AMD上滑動(dòng)(點(diǎn)C與A、點(diǎn)D與B不重合),且CE⊥CD交AB于精英家教網(wǎng)E,DF⊥CD交AB于F,
(1)求證:AE=BF;
(2)在動(dòng)弦CD滑動(dòng)的過(guò)程中,四邊形CDFE的面積是否為定值?若是定值,請(qǐng)給出證明并求出這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,⊙O的直徑AB=4cm,AM、BN為⊙O的切線,在AM上取一點(diǎn)D(D與A不重合),DE切⊙O于E,且DE與BN交于C點(diǎn),設(shè)AD=,BC=

    (1)求證∠COD=90°。

    (2)寫出的函數(shù)關(guān)系式,并說(shuō)明是什么函數(shù)。

    (3)若是方程的兩根,求m的值及和y的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2001年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(05)(解析版) 題型:解答題

(2001•海南)如圖,⊙O的直徑AB=15cm,有一條定長(zhǎng)為9cm的動(dòng)弦CD沿弧AMD上滑動(dòng)(點(diǎn)C與A、點(diǎn)D與B不重合),且CE⊥CD交AB于E,DF⊥CD交AB于F,
(1)求證:AE=BF;
(2)在動(dòng)弦CD滑動(dòng)的過(guò)程中,四邊形CDFE的面積是否為定值?若是定值,請(qǐng)給出證明并求出這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2001年全國(guó)中考數(shù)學(xué)試題匯編《相交線與平行線》(01)(解析版) 題型:解答題

(2001•海南)如圖,⊙O的直徑AB=15cm,有一條定長(zhǎng)為9cm的動(dòng)弦CD沿弧AMD上滑動(dòng)(點(diǎn)C與A、點(diǎn)D與B不重合),且CE⊥CD交AB于E,DF⊥CD交AB于F,
(1)求證:AE=BF;
(2)在動(dòng)弦CD滑動(dòng)的過(guò)程中,四邊形CDFE的面積是否為定值?若是定值,請(qǐng)給出證明并求出這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2001年海南省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2001•海南)如圖,⊙O的直徑AB=15cm,有一條定長(zhǎng)為9cm的動(dòng)弦CD沿弧AMD上滑動(dòng)(點(diǎn)C與A、點(diǎn)D與B不重合),且CE⊥CD交AB于E,DF⊥CD交AB于F,
(1)求證:AE=BF;
(2)在動(dòng)弦CD滑動(dòng)的過(guò)程中,四邊形CDFE的面積是否為定值?若是定值,請(qǐng)給出證明并求出這個(gè)定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案