如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)(m≠0)的圖象交于二、四象限內(nèi)的A、B兩點(diǎn),與x軸交于C點(diǎn),點(diǎn)B的坐標(biāo)為(6,n).線段OA=5,E為x軸上一點(diǎn),且cos∠AOE=
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求△AOC的面積.

【答案】分析:(1)過A點(diǎn)作AD⊥OE,垂足為D,已知OA=5,cos∠AOE=,解直角三角形求OD、AD,確定A點(diǎn)坐標(biāo),根據(jù)A點(diǎn)坐標(biāo)求反比例函數(shù)和B點(diǎn)坐標(biāo),根據(jù)A、B兩點(diǎn)坐標(biāo),求一次函數(shù)的解析式;
(2)根據(jù)直線AB的解析式求C點(diǎn)坐標(biāo),再求△AOC的面積.
解答:解:(1)過A點(diǎn)作AD⊥OE,垂足為D,
在Rt△AOD中,∵OA=5,cos∠AOE=,
∴OD=OA•cos∠AOE=3,
由勾股定理,得AD=4,
則A(-3,4),
∵A、B兩點(diǎn)在反比例函數(shù)(m≠0)的圖象上,
∴m=-3×4=6n,
解得m=-12,n=-2,
將A(-3,4),B(6,-2)代入y=kx+b中,得,
解得,
故反比例函數(shù)解析式為y=-,一次函數(shù)解析式為y=-x+2;

(2)在一次函數(shù)y=-x+2中,令y=0,得x=3,故C(3,0),
OC=3,S△AOC=×OC×AD=×3×4=6.
點(diǎn)評(píng):本題考查了反比例函數(shù)的綜合運(yùn)用.關(guān)鍵是作x軸的垂線,解直角三角形求A點(diǎn)坐標(biāo),用待定系數(shù)法求直線,雙曲線的解析式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案