判斷對錯

過三角形頂點,垂直于對邊的線段叫三角形的高

(  )

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

15、給出下列命題:①若一個三角形有兩個角相等,則這個三角形是等腰三角形;②若一個三角形關于一條直線成軸對稱圖形,則這個三角形是等腰三角形;③若三角形的一條內角平分線平分這個角的對邊,則這個三角形是等腰三角形;④若過三角形頂點的一條直線能將這個三角形分成兩個等腰三角形,則這個三角形是等腰三角形.其中正確的是
①②
(只填序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

(2012•大興區(qū)一模)閱讀下列材料:
小明遇到一個問題:已知:如圖1,在△ABC中,∠BAC=120°,∠ABC=40°,試過△ABC的一個頂點畫一條直線,將此三角形分割成兩個等腰三角形.
他的做法是:如圖2,首先保留最小角∠C,然后過三角形頂點A畫直線交BC于點D.將∠BAC分成兩個角,使∠DAC=20°,△ABC即可被分割成兩個等腰三角形.
喜歡動腦筋的小明又繼續(xù)探究:當三角形內角中的兩個角滿足怎樣的數(shù)量關系時,此三角形一定可以被過頂點的一條直線分割成兩個等腰三角形.
他的做法是:如圖3,先畫△ADC,使DA=DC,延長AD到點B,使△BCD也是等腰三角形,如果DC=BC,那么∠CDB=∠ABC,因為∠CDB=2∠A,所以∠ABC=2∠A.于是小明得到了一個結論:
當三角形中有一個角是最小角的2倍時,則此三角形一定可以被過頂點的一條直線分割成兩個等腰三角形.
請你參考小明的做法繼續(xù)探究:當三角形內角中的兩個角滿足怎樣的數(shù)量關系時,此三角形一定可以被過頂點的一條直線分割成兩個等腰三角形.請直接寫出你所探究出的另外兩條結論(不必寫出探究過程或理由).

查看答案和解析>>

科目:初中數(shù)學 來源:鼎尖助學系列—同步練習(數(shù)學 七年級下冊)、與三角形有關的線段 題型:008

判斷對錯

過三角形的一個頂點且平分這個角的射線稱為三角形的角平分線

(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下列材料:

小明遇到一個問題:已知:如圖1,在△ABC中,∠BAC=120°,∠ABC=40°,試過△ABC的一個頂點畫一條直線,將此三角形分割成兩個等腰三角形.

    他的做法是:如圖2,首先保留最小角∠C,然后過三角形頂點A畫直線交BC于點D. 將∠BAC分成兩個角,使∠DAC=20°,△ABC即可被分割成兩個等腰三角形.

喜歡動腦筋的小明又繼續(xù)探究:當三角形內角中的兩個角滿足怎樣的數(shù)量關系時,此三角形一定可以被過頂點的一條直線分割成兩個等腰三角形.

他的做法是:

如圖3,先畫△ADC ,使DA=DC,延長AD到點B,使△BCD也是等腰三角形,如果DC=BC,那么∠CDB =∠ABC,因為∠CDB=2∠A,所以∠ABC= 2∠A.于是小明得到了一個結論:       

當三角形中有一個角是最小角的2倍時,則此三角形一定可以被過頂點的一條直線分割成兩個等腰三角形.

請你參考小明的做法繼續(xù)探究:當三角形內角中的兩個角滿足怎樣的數(shù)量關系時,此三角形一定可以被過頂點的一條直線分割成兩個等腰三角形.請直接寫出你所探究出的另外兩條結論(不必寫出探究過程或理由).

 

查看答案和解析>>

同步練習冊答案