【題目】如圖,四邊形ABCD中,AB∥CD,AB≠CD,AC=DB.
(1)求證:AD=BC;
(2)若E,F,G,H分別是AB,CD,AC,BD的中點(diǎn),求證:線段EF與線段GH互相平分.
【答案】(1)詳見解析;(2)詳見解析.
【解析】
(1)由平行四邊形的性質(zhì)易得AC=BM=BD,∠BDC=∠M=∠ACD,由全等三角形判定定理及性質(zhì)得出結(jié)論;
(2)連接EH,HF,FG,GE,E,F,G,H分別是AB,CD,AC,BD的中點(diǎn),易得四邊形HFGE為平行四邊形,由平行四邊形的性質(zhì)及(1)結(jié)論得HFGE為菱形,易得EF與GH互相垂直平分.
證明:(1)過點(diǎn)B作BM∥AC交DC的延長線于點(diǎn)M,如圖1,
∵AB∥CD
∴四邊形ABMC為平行四邊形.
∴AC=BM=BD,∠BDC=∠M=∠ACD.
在△ACD和△BDC中,
,
∴△ACD≌△BDC(SAS),
∴AD=BC;
(2)連接EH,HF,FG,GE,如圖2,
∵E,F,G,H分別是AB,CD,AC,BD的中點(diǎn),
∴HE∥AD,且HE=AD,FG∥AD,且FG=,
∴四邊形HFGE為平行四邊形,
由(1)知,AD=BC,
∴HE=EG,
∴HFGE為菱形,
∴EF與GH互相垂直平分.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商品現(xiàn)在售價(jià)為每件60元,每星期可賣出300件,市場調(diào)查反映:調(diào)整價(jià)格,每件漲價(jià)1元,每星期要少賣出10件;每件降價(jià)1元,每星期可多賣出20件.已知商品的進(jìn)價(jià)為每件40元.
(1)設(shè)每件降價(jià)x元,每星期的銷售利潤為y元;
① 請寫出y與x之間的函數(shù)關(guān)系式;
② 確定x的值,使利潤最大,并求出最大利潤;
(2)若漲價(jià)x元,則x= 元時(shí),利潤y的最大值為 元(直接寫出答案,不必寫過程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某蔬菜有限公司一年四季都有大量新鮮蔬菜銷往全國各地,近年來它的蔬菜產(chǎn)值不斷增加,2014年蔬菜的產(chǎn)值是640萬元,2016年產(chǎn)值達(dá)到1000萬元.
(1)求2015年、2016年蔬菜產(chǎn)值的平均增長率是多少?
(2)若2017年蔬菜產(chǎn)值繼續(xù)穩(wěn)定增長(即年增長率與前兩年的年增長率相同),那么請你估計(jì)2017年該公司的蔬菜產(chǎn)值達(dá)到多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AD邊的中點(diǎn),BE⊥AC于點(diǎn)F,連接DF,分析下列五個(gè)結(jié)論:①△AEF∽△CAB;②CF=2AF;③DF=DC;④S四邊形CDEF=S△ABF,其中正確的結(jié)論有________個(gè)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AD⊥BC于點(diǎn)D,點(diǎn)O是AC邊上一點(diǎn),連接BO交AD于F,OE⊥OB交BC邊于點(diǎn)E.
(1)求證:△ABF∽△COE;
(2)當(dāng)O為AC邊中點(diǎn), 時(shí),如圖2,求的值;
(3)當(dāng)O為AC邊中點(diǎn), 時(shí),請直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班將舉行“數(shù)學(xué)知識競賽”活動,班長安排小明購買獎品,下面兩圖是小明買回獎品時(shí)與班長的對話情境:
請根據(jù)上面的信息,解決問題:
(1)試計(jì)算兩種筆記本各買了多少本?
(2)請你解釋:小明為什么不可能找回68元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中, ,點(diǎn)D, E分別在上,且,將沿DE折疊,點(diǎn)C恰好落在AB邊上的點(diǎn)F處,如果, ,那么CD的長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將平行四邊形 ABCD 沿對角線 BD 折疊,使點(diǎn) A 落在A′處,若∠1=∠2=50°,則∠A′的度數(shù)為( )
A.100°B.105°C.110°D.115°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,如圖1,將線段AB平移至線段CD,連接AC、BD.
(1)已知A(﹣3,0)、B(﹣2,﹣2),點(diǎn)C在y軸的正半軸上,點(diǎn)D在第一象限內(nèi),且三角形ACO的面積是6,求點(diǎn)C、D的坐標(biāo);
(2)如圖2,在平面直角坐標(biāo)系中,已知一定點(diǎn)M(1,0),兩個(gè)動點(diǎn)E(a,2a+1)、F(b,﹣2b+3).
①請你探索是否存在以兩個(gè)動點(diǎn)E、F為端點(diǎn)的線段EF平行于線段OM且等于線段OM,若存在,求出點(diǎn)E、F兩點(diǎn)的坐標(biāo);若不存在,請說明理由;
②當(dāng)點(diǎn)E、F重合時(shí),將該重合點(diǎn)記為點(diǎn)P,另當(dāng)過點(diǎn)E、F的直線平行于x軸時(shí),是否存在△PEF的面積為2?若存在,求出點(diǎn)E、F兩點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com