【題目】(本題10分) 如圖,已知:AB是⊙O的直徑,點C在⊙O上,CD是⊙O的切線,AD⊥CD于點D.E是AB延長線上一點,CE交⊙O于點F,連結(jié)OC,AC.
(1)求證:AC平分∠DAO.
(2)若∠DAO=105°,∠E=30°.
①求∠OCE的度數(shù).
②若⊙O的半徑為2 ,求線段EF的長.
【答案】
(1)
解:∵直線與⊙O相切,
∴OC⊥CD;
又∵AD⊥CD,
∴AD//OC,
∴∠DAC=∠OCA;
又∵OC=OA,
∴∠OAC=∠OCA,
∴∠DAC=∠OAC;
∴AC平分∠DAO.
(2)
解:①∵AD//OC,∠DAO=105°,
∴∠EOC=∠DAO=105°;
∵∠E=30°,
∴∠OCE=45°.
②作OG⊥CE于點G,可得FG=CG,
∵OC=2,∠OCE=45°.
∴CG=OG=2,
∴FG=2;
∵在RT△OGE中,∠E=30°,
∴GE=2,
∴EF=GE-FG=2-2.
【解析】(1)利用了切線的性質(zhì),平行線的判定和性質(zhì),等邊對等角,角平分線的判定即可得證。
(2)①根據(jù)(1)得出的AD//OC,從而得出同位角相等,再利用三角形的內(nèi)角和定理即可求出答案;②作OG⊥CE于點G,可得FG=CG,根據(jù)等邊對等角得出CG=OG=FG=2,在根據(jù)勾股定理得出GE,從而求出EF=GE-FG.
【考點精析】認真審題,首先需要了解平行線的判定與性質(zhì)(由角的相等或互補(數(shù)量關(guān)系)的條件,得到兩條直線平行(位置關(guān)系)這是平行線的判定;由平行線(位置關(guān)系)得到有關(guān)角相等或互補(數(shù)量關(guān)系)的結(jié)論是平行線的性質(zhì)),還要掌握三角形的內(nèi)角和外角(三角形的三個內(nèi)角中,只可能有一個內(nèi)角是直角或鈍角;直角三角形的兩個銳角互余;三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和;三角形的一個外角大于任何一個和它不相鄰的內(nèi)角)的相關(guān)知識才是答題的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:
【題目】學校標準化建設需購進一批電腦和電子白板,經(jīng)過市場考察得知,購買1臺電腦和2臺電子白板需3.5萬元,購買2臺電腦和1臺電子白板需要2.5萬元.
(1)求每臺電腦和每臺電子白板各多少萬元;
(2)根據(jù)學校需要,實際購進電腦和電子白板共30臺,總費用30萬元,請你通過計算求學校購買了電腦和電子白板各多少臺.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一次函數(shù)y1=﹣ x﹣1與反比例函數(shù)y2= 的圖象交于點A(﹣4,m).
(1)觀察圖象,在y軸的左側(cè),當y1>y2時,請直接寫出x的取值范圍;
(2)求出反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與軸、軸分別交于點,.點的坐標為(,0),點 的坐標為(,0).
(1)求的值;
(2)若點(,)是第二象限內(nèi)的直線上的一個動點.當點運動過程中,試寫出的面積與的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(3)探究:當運動到什么位置時,的面積為,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題6分)如圖,在平面直角坐標系中,△ABC各頂點的坐標分別為A(2,2),B(4,1),C(4,4).
(1)作出 ABC關(guān)于原點O成中心對稱的 A1B1C1.
(2)作出點A關(guān)于x軸的對稱點A'.若把點A'向右平移a個單位長度后落在 A1B1C1的內(nèi)部(不包括頂點和邊界),求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,AD平分∠BAC,AE⊥BC,∠B=40°,∠C=70°.
(1)求∠DAE的度數(shù);
(2)如圖②,若把“AE⊥BC”變成“點F在DA的延長線上,FE⊥BC”,其它條件不變,求∠DFE的度數(shù);
(3)如圖③,若把“AE⊥BC”變成“AE平分∠BEC”,其它條件不變,∠DAE的大小是否變化,并請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com