關(guān)于x的一元二次方程ax2+4x+1=0有兩個不相等的實(shí)數(shù)根,則a的取值范圍
 
考點(diǎn):根的判別式,一元二次方程的定義
專題:
分析:根據(jù)題意和一元二次方程根的判別式可得出a的取值范圍.
解答:解:∵關(guān)于x的一元二次方程ax2+4x+1=0有兩個不相等的實(shí)數(shù)根,
∴△>0,
∴△=b2-4ac=16-4a>0,
解得a<4,
∵a≠0,
∴a的取值范圍是a<4且a≠0,
故答案為a<4且a≠0.
點(diǎn)評:本題考查了根的判別式以及一元二次方程的定義,是基礎(chǔ)題,難度不大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在綜合實(shí)踐活動課中,王老師出了這樣一道題:
如圖1,在矩形ABCD中,M是BC的中點(diǎn),過點(diǎn)M作ME∥AC交BD于點(diǎn)E,作MF∥BD交AC于點(diǎn)F.求證:四邊形OEMF是菱形.
做完題后,同學(xué)們按照老師的要求進(jìn)行變式或拓展,提出新的問題讓其它同學(xué)解答.
(1)小明同學(xué)說:“我把條件中的‘矩形ABCD’改為‘菱形ABCD’,如圖2所示,發(fā)現(xiàn)四邊形OEMF是矩形.”請給予證明;
(2)小芳同學(xué)說:“我把條件中的‘點(diǎn)M是BC的中點(diǎn)’改為‘點(diǎn)M是BC延長線上的一個動點(diǎn)’,發(fā)現(xiàn)點(diǎn)F落在AC的延長線上,如圖3所示,此時(shí)OB、ME、MF三條線段之間存在某種數(shù)量關(guān)系.”請你寫出這個結(jié)論,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

解不等式組:
x+3<4
1-x≤3
,并在數(shù)軸上表示它們的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖.斜坡AF的坡度(鉛直高度與水平寬度的比)為1:2.4,斜坡A F上一棵與水平
面垂直的大樹BD在陽光的照射下,在斜坡上的影長BC=6.5米,此時(shí)光線與水平線恰好成30°角,求大樹BD的高.(結(jié)果精確到0.1米,參考數(shù)據(jù):
2
≈1.414,
3
≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC的頂點(diǎn)坐標(biāo)分別為A(1,3)、B(4,2)、C(2,1).
(1)作出與△ABC關(guān)于x軸對稱的△A1B1C1,并寫出點(diǎn)A1的坐標(biāo);
(2)以坐標(biāo)原點(diǎn)O為位似中心,在坐標(biāo)原點(diǎn)的另一側(cè)畫出△A2B2C2,使
AB
A2B2
=
1
2
,并寫出點(diǎn)A2的坐標(biāo);
(3)作出將△ABC以原點(diǎn)O為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)90°得到的△A3B3C3.并求線段AB掃過的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,左邊是一個由5個棱長為1的小正方體組合而成的幾何圖,現(xiàn)在增加一個小正方體,使其主視圖如右,則增加后的幾何體的左視圖的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,點(diǎn)A,點(diǎn)B的坐標(biāo)分別是(-2,-3),(1,-3),則AB的長等于
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC中,∠A=90°,AB=AC,∠1=∠2,DE⊥BC,垂足于點(diǎn)E,BC=8,則△DEC的周長是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

函數(shù)y=
2x-4
+
1
4-x
中自變量x的取值范圍是( 。
A、x>4B、x≥2
C、2<x<4D、2≤x<4

查看答案和解析>>

同步練習(xí)冊答案