【題目】已知如圖,矩形ABCD的周長為64,AB=12,對角線AC的垂直平分線分別交AD、BC于E、F,連接AF、CE、EF,且EF與AC相交于點O.
(1)求證:四邊形AECF是菱形;
(2)求S△ABF與S△AEF的比值.
【答案】(1)證明見解析;(2)8:17.
【解析】
(1)根據SSS證明△AOE≌△COF,根據全等得出OE=OF,推出四邊形是平行四邊形,再根據EF⊥AC即可推出四邊形是菱形;
(2)由(1)知S△AEF=S△ACF,再分別求得S△ABF與S△AEF的面積即可得到其比值.
(1)∵四邊形ABCD是矩形,
∴AD∥BC,
∴∠OAE=∠OCF.
∵EF垂直平分AC,
∴AO=CO,∠AOE=∠COF=90°,
∴△AOE≌△COF(ASA),
∴OE=OF,
∴四邊形AFEC是平行四邊形,
又∵EF⊥AC,
∴四邊形AFEC是菱形;
(2)∵△AOE≌△COF,
∴S△AEF=S△ACF
∵S△ABF=3BF,S△AEF=3FC,
∴S△ABF:S△AEF=BF:FC.
∵矩形ABCD的周長為64,AB=12,
∴BC=20,
設FC=x,則AF=x,BF=20﹣x
在Rt△ABF中,由勾股定理
122+(20﹣x)2=x2
解得:x,
BF,
∴S△ABF:S△AEF=BF:FC=8:17.
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線經過點、和,垂直于軸,交拋物線于點,垂直于軸,垂足為,直線是該拋物線的對稱軸,點是拋物線的頂點.
(1)求出該二次函數的表達式及點的坐標;
(2)若沿軸向右平移,使其直角邊與對稱軸重合,再沿對稱軸向上平移到點與點重合,得到,求此時與矩形重疊部分圖形的面積;
(3)若沿軸向右平移個單位長度()得到,與重疊部分圖形的面積記為,求與之間的函數表達式,并寫出自變量的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有七張正面分別標有數字﹣3,﹣2,﹣1,0,1,2,3的卡片,它們除數字不同外其余全部相同.現將它們背面朝上,洗勻后從中隨機抽取一張,記卡片上的數字為a,則使關于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有兩個不相等的實數根,且以x為自變量的二次函數y=x2﹣(a2+1)x﹣a+2的圖象不經過點(1,0)的概率是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如下圖,隧道的截面由拋物線和矩形構成,,隧道的最高點P位于AB的中點的正上方,且與AB的距離為4m.
建立如圖所示的坐標系,求圖中拋物線的解析式;
若隧道為單向通行,一輛高4米、寬3米的火車能否從隧道內通過?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別是BC、CD上的點,且∠EAF=45°,AE、AF分別交BD于M、N,連按EN、EF,有以下結論:
①△ABM∽△NEM;②△AEN是等腰直角三角形;③當AE=AF時,;④BE+DF=EF;⑤若點F是DC的中點,則CECB.
其中正確的個數是( )
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2016年3月,我市某中學舉行了“愛我中國朗誦比賽”活動,根據學生的成績劃分為A、B、C、D四個等級,并繪制了不完整的兩種統(tǒng)計圖.根據圖中提供的信息,回答下列問題:
(1)參加朗誦比賽的學生共有 人,并把條形統(tǒng)計圖補充完整;
(2)扇形統(tǒng)計圖中,m= ,n= ;C等級對應扇形有圓心角為 度;
(3)學校欲從獲A等級的學生中隨機選取2人,參加市舉辦的朗誦比賽,請利用列表法或樹形圖法,求獲A等級的小明參加市朗誦比賽的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小帶和小路兩個人開車從A城出發(fā)勻速行駛至B城.在整個行駛過程中,小帶和小路兩人車離開A城的距離y(km)與行駛的時間t(h)之間的函數關系如圖所示.有下列結論;①A,B兩城相距300 km;②小路的車比小帶的車晚出發(fā)1 h,卻早到1 h;③小路的車出發(fā)后2.5 h追上小帶的車;④當小帶和小路的車相距50 km時,t=或t=.其中正確的結論有( )
A. ①②③④B. ①②④
C. ①②D. ②③④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線經過,及原點,頂點為.
(1)求拋物線的函數解析式;
(2)設點在拋物線上,點在拋物線的對稱軸上,且以、、,為頂點,為邊的四邊形是平行四邊形,求點的坐標;
(3)是拋物線上第一象限內的動點,過點作軸,垂足為.是否存在這樣的點,使得以,,為頂點的三角形與相似?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com