【題目】已知:如圖,二次函數(shù)y=x2+(2k﹣1)x+k+1的圖象與x軸相交于O、A兩點(diǎn).

(1)求這個(gè)二次函數(shù)的解析式;

(2)在這條拋物線的對(duì)稱軸右邊的圖象上有一點(diǎn)B,使銳角△AOB的面積等于3.求點(diǎn)B的坐標(biāo).

【答案】1y=x2-3x,(2)(4,4.

【解析】試題分析:(1)將原點(diǎn)坐標(biāo)代入拋物線中即可求出k的值,也就得出了拋物線的解析式.

2)根據(jù)(1)得出的拋物線的解析式可得出A點(diǎn)的坐標(biāo),也就求出了OA的長(zhǎng),根據(jù)△OAB的面積可求出B點(diǎn)縱坐標(biāo)的絕對(duì)值,然后將符合題意的B點(diǎn)縱坐標(biāo)代入拋物線的解析式中即可求出B點(diǎn)的坐標(biāo),然后根據(jù)B點(diǎn)在拋物線對(duì)稱軸的右邊來(lái)判斷得出的B點(diǎn)是否符合要求即可.

試題解析:①∵函數(shù)的圖象與x軸相交于O,

∴0=k+1,

∴k=-1,

∴y=x2-3x

假設(shè)存在點(diǎn)B,過(guò)點(diǎn)BBD⊥x軸于點(diǎn)D,

∵△AOB的面積等于6,

AOBD=6,

當(dāng)0=x2-3x,

xx-3=0

解得:x=03,

∴AO=3

∴BD=4

4=x2-3x,

解得:x=4x=-1(舍去).

頂點(diǎn)坐標(biāo)為:(1.5,-2.25).

∵2.254

∴x軸下方不存在B點(diǎn),

點(diǎn)B的坐標(biāo)為:(4,4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在△ABC中,OB、OC是∠ABC、∠ACB的角平分線;

(1)填寫(xiě)下面的表格.

∠A的度數(shù)

50°

60°

70°

∠BOC的度數(shù)

(2)試猜想∠A與∠BOC之間存在一個(gè)怎樣的數(shù)量關(guān)系,并證明你的猜想;

(3)如圖2,△ABC的高BE、CD交于O點(diǎn),試說(shuō)明圖中∠A與∠BOD的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一列快車從甲地駛往乙地,一列慢車從乙地駛往甲地,兩車同時(shí)出發(fā),設(shè)慢車行駛的時(shí)間為x(h),兩車之間的距離為y(km),圖中的折線表示y與x之間的函數(shù)關(guān)系,根據(jù)圖像進(jìn)行探究。

(1)填空甲、乙兩地之間的距離為_(kāi)______千米;

(2)請(qǐng)解釋圖中的點(diǎn)B的實(shí)際意義;________________

(3)直接寫(xiě)出慢車速度_________,快車的速度___________

(4)求線段BC所表示的y與x之間的函數(shù)關(guān)系式,并直接寫(xiě)出自變量x的取值范圍;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】|x﹣1|+|y+3|=0 則x+y=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等邊△ABC中,D是邊AC上一點(diǎn),連接BD,將△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△BAE,連接ED,若BC=5,BD=4.則下列四個(gè)結(jié)論:①AE∥BC;②∠ADE=∠BDC;③△BDE是等邊三角形;④△AED的周長(zhǎng)是9.其中正確的結(jié)論是__(把你認(rèn)為正確結(jié)論的序號(hào)都填上.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A在雙曲線y上,點(diǎn)B在雙曲線yk≠0)上,ABx軸,過(guò)點(diǎn)AADx軸于D.連接OB,與AD相交于點(diǎn)C,若AC=2CD,則k__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖①,在矩形ABCD中,AB=4,AD=10,在BC邊上是否存在點(diǎn)P,使∠APD=90°,若存在,請(qǐng)用直尺和圓規(guī)作出點(diǎn)P并求出BP的長(zhǎng).(保留作圖痕跡)

(2)如圖②,在ABC中,∠ABC=60°,BC=12,ADBC邊上的高,E、F分別為ABAC的中點(diǎn),當(dāng)AD=6時(shí),BC邊上是否存在一點(diǎn)Q,使∠EQF=90°,求此時(shí)BQ的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系中,將點(diǎn)A(1,﹣2)向上平移1個(gè)單位長(zhǎng)度后與點(diǎn)B重合,則點(diǎn)B的坐標(biāo)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一枚均勻的正四面體,四個(gè)面上分別標(biāo)有數(shù)字1,2,34,小紅隨機(jī)地拋擲一次,把著地一面的數(shù)字記為x;另有三張背面完全相同,正面上分別寫(xiě)有數(shù)字2,-1,1的卡片,小亮將其混合后,正面朝下放置在桌面上,并從中隨機(jī)地抽取一張,把卡片正面上的數(shù)字記為y;然后他們計(jì)算出S=x+y的值.

(1)用樹(shù)狀圖或列表法表示出S的所有可能情況;

(2)分別求出當(dāng)S=0S<2時(shí)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案