【題目】如圖1,△ABC,CA=CB,∠ACB=90°,直線l經(jīng)過(guò)點(diǎn)C,AFl于點(diǎn)F,BEl于點(diǎn)E

(1)求證:△ACF≌△CBE

(2)將直線旋轉(zhuǎn)到如圖2所示位置,點(diǎn)DAB的中點(diǎn)連接DE.若AB=,∠CBE=30°,DE的長(zhǎng)

【答案】(1)答案見(jiàn)解析;(2)

【解析】試題分析:(1)根據(jù)垂直的定義得到∠BEC=ACB=90°,根據(jù)全等三角形的性質(zhì)得到∠EBC=CAF,即可得到結(jié)論;

2)連接CDDF,證得△BCE≌△ACF,根據(jù)全等三角形的性質(zhì)得到BE=CF,CE=AF,證得△DEF是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)得到EF=DEEF=CE+BE,進(jìn)而得到DE的長(zhǎng).

試題解析:(1BECE∴∠BEC=ACB=90°,∴∠EBC+∠BCE=BCE+∠ACF=90°,∴∠EBC=CAFAFl于點(diǎn)F,∴∠AFC=90°.

BCE與△ACF中,∵,∴△ACF≌△CBEAAS);

2)如圖2,連接CD,DFBECE∴∠BEC=ACB=90°,∴∠EBC+∠BCE=BCE+∠ACF=90°,∴∠EBC=CAFAFl于點(diǎn)F,∴∠AFC=90°.

BCE與△CAF中,∵,∴△BCE≌△CAFAAS);

BE=CF∵點(diǎn)DAB的中點(diǎn),CD=BDCDB=90°,∴∠CBD=ACD=45°,而∠EBC=CAF,∴∠EBD=DCF.在BDE與△CDF中,∵∴△BDE≌△CDFSAS),∴∠EDB=FDCDE=DF∵∠BDE+∠CDE=90°,∴∠FDC+∠CDE=90°,即∠EDF=90°,∴△EDF是等腰直角三角形,EF=DE,EF=CE+CF=CE+BECA=CB,ACB=90°,AB=4,BC=4.又∵∠CBE=30°,CE=BC=2BE=CE=2,EF=CE+BE=2+2,DE===+

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】體育課上,甲、乙兩個(gè)小組進(jìn)行定點(diǎn)投籃對(duì)抗賽,每組10人,每人投10次.下表是甲組成績(jī)統(tǒng)計(jì)表:

投進(jìn)個(gè)數(shù)

10個(gè)

8個(gè)

6個(gè)

4個(gè)

人數(shù)

1個(gè)

5

2

2

(1)請(qǐng)計(jì)算甲組平均每人投進(jìn)個(gè)數(shù);

(2)經(jīng)統(tǒng)計(jì),兩組平均每人投進(jìn)個(gè)數(shù)相同且乙組成的方差為3.2.若從成績(jī)穩(wěn)定性角度看,哪一組表現(xiàn)更好?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+cx軸分別交于點(diǎn)A、B,與y軸交于點(diǎn)C,且OA=1,OB=3,頂點(diǎn)為D,對(duì)稱(chēng)軸交x軸于點(diǎn)Q.

(1)求拋物線對(duì)應(yīng)的二次函數(shù)的表達(dá)式;

(2)點(diǎn)P是拋物線的對(duì)稱(chēng)軸上一點(diǎn),以點(diǎn)P為圓心的圓經(jīng)過(guò)A、B兩點(diǎn),且與直線CD相切,求點(diǎn)P的坐標(biāo);

(3)在拋物線的對(duì)稱(chēng)軸上是否存在一點(diǎn)M,使得△DCM∽△BQC?如果存在,求出點(diǎn)M的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一條筆直的公路上有A、B、C三地,C地位于A、B兩地之間,甲車(chē)從A地沿這條公路勻速駛向C地,乙車(chē)從B地沿這條公路勻速駛向A地,在甲車(chē)出發(fā)至甲車(chē)到達(dá)C地的過(guò)程中,甲、乙兩車(chē)各自與C地的距離ykm)與甲車(chē)行駛時(shí)間th)之間的函數(shù)關(guān)系如圖所示.下列結(jié)論:①甲車(chē)出發(fā)2h時(shí),兩車(chē)相遇;②乙車(chē)出發(fā)1.5h時(shí),兩車(chē)相距170km;③乙車(chē)出發(fā)h時(shí),兩車(chē)相遇;④甲車(chē)到達(dá)C地時(shí),兩車(chē)相距40km.其中正確的是______(填寫(xiě)所有正確結(jié)論的序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們?cè)凇队欣頂?shù)》這一章中學(xué)習(xí)過(guò)絕對(duì)值的概念:

一般的,數(shù)軸上表示數(shù)的點(diǎn)與原點(diǎn)的距離叫做數(shù)的絕對(duì)值,記作.

實(shí)際上,數(shù)軸上表示數(shù)的點(diǎn)與原點(diǎn)的距離可記作,數(shù)軸上表示數(shù)的點(diǎn)與表示數(shù)2的點(diǎn)的距離可記作,那么:

1)①數(shù)軸上表示數(shù)3的點(diǎn)與表示數(shù)1的點(diǎn)的距離可記作 .

②數(shù)軸上表示數(shù)的點(diǎn)與表示數(shù)2的點(diǎn)的距離可記作 .

③數(shù)軸上表示數(shù)的點(diǎn)與表示數(shù)的點(diǎn)的距離可記作 .

2)數(shù)軸上與表示數(shù)的點(diǎn)的距離為5的點(diǎn)有 個(gè),它表示的數(shù)為 .

3)拓展:①當(dāng)數(shù)取值為 時(shí),數(shù)軸上表示數(shù)的點(diǎn)與表示數(shù)的點(diǎn)的距離最小.

②當(dāng)整數(shù)取值為 時(shí),式子有最小值為 .

③當(dāng)取值范圍為 時(shí),式子有最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】永輝超市銷(xiāo)售茶壺、茶杯,茶壺每只定價(jià)20元,茶杯每只4元.今年雙十一期間超市將開(kāi)展促銷(xiāo)活動(dòng),向顧客提供兩種優(yōu)惠方案:

方案一:每買(mǎi)一只茶壺就贈(zèng)一只茶杯;

方案二:茶壺和茶杯都按定價(jià)的90%付款.

某顧客計(jì)劃到該超市購(gòu)買(mǎi)茶壺5只和茶杯只(茶杯數(shù)多于5只).

1)用含的代數(shù)式分別表示方案一與方案二各需付款多少元?

2)當(dāng)時(shí),請(qǐng)通過(guò)計(jì)算說(shuō)明該顧客選擇上面的兩種購(gòu)買(mǎi)方案哪種更省錢(qián)?

3)當(dāng)時(shí),你能給出一種更為省錢(qián)的購(gòu)買(mǎi)方案嗎?試寫(xiě)出你的購(gòu)買(mǎi)方法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,動(dòng)點(diǎn)S從點(diǎn)A出發(fā),沿線段AB運(yùn)動(dòng)至點(diǎn)B后,立即按原路返回,點(diǎn)S在運(yùn)動(dòng)過(guò)程中速度不變,則以點(diǎn)B為圓心,線段BS長(zhǎng)為半徑的圓的面積m與點(diǎn)S的運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系圖象大致為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工程交由甲、乙兩個(gè)工程隊(duì)來(lái)完成,已知甲工程隊(duì)單獨(dú)完成需要60天,乙工程隊(duì)單獨(dú)完成需要40

(1)若甲工程隊(duì)先做30天后,剩余由乙工程隊(duì)來(lái)完成,還需要用時(shí)   

(2)若甲工程隊(duì)先做20天,乙工程隊(duì)再參加,兩個(gè)工程隊(duì)一起來(lái)完成剩余的工程,求共需多少天完成該工程任務(wù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:()如果兩個(gè)函數(shù) ,存在 取同一個(gè)值,使得,那么稱(chēng) 互聯(lián)互通函數(shù),稱(chēng)對(duì)應(yīng)的值為 互聯(lián)點(diǎn); )如果兩個(gè)函數(shù)互聯(lián)互通函數(shù),那么的最大值稱(chēng)為互通值”.

1)判斷函數(shù)是否為互通互聯(lián)函數(shù),如果是,請(qǐng)求出時(shí)他們的互聯(lián)點(diǎn),如果不是,請(qǐng)說(shuō)明理由;

2)當(dāng)時(shí),已知函數(shù)互聯(lián)互通函數(shù)”.且有唯一互聯(lián)點(diǎn);

①求出的取值范圍;

②若他們的互通值18 ,試求出 的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案