【題目】如圖1和圖2,在△ABC中,AB=13,BC=14,.
探究:如圖1,AH⊥BC于點(diǎn)H,則AH=___,AC=___,△ABC的面積=___.
拓展:如圖2,點(diǎn)D在AC上(可與點(diǎn)A、C重合),分別過(guò)點(diǎn)A、C作直線BD的垂線,垂足為E、F,設(shè)BD=x,AE=m,CF=n,(當(dāng)點(diǎn)D與A重合時(shí),我們認(rèn)為=0).
(1)用含x、m或n的代數(shù)式表示及;
(2)求(m+n)與x的函數(shù)關(guān)系式,并求(m+n)的最大值和最小值;
(3)對(duì)給定的一個(gè)x值,有時(shí)只能確定唯一的點(diǎn)D,指出這樣的x的取值范圍.
發(fā)現(xiàn):請(qǐng)你確定一條直線,使得A、B、C三點(diǎn)到這條直線的距離之和最。ú槐貙懗鲞^(guò)程),并寫出這個(gè)最小值.
【答案】探究:12,15,84;拓展:(1),;(2);x=時(shí),()的最大值為15;當(dāng)時(shí),()的最小值為12;(3)或;發(fā)現(xiàn):.
【解析】
探究:由,AB=13,可得BH的長(zhǎng),即可求出CH的長(zhǎng),利用勾股定理求出AH、AC的長(zhǎng)即可;拓展:(1)由三角形的面積公式即可求解;(2)首先由(1)可得,,再根據(jù)S△ABD+S△CBD=S△ABC=84,即可求出(m+n)與x的函數(shù)關(guān)系式,然后由點(diǎn)D在AC上(可與點(diǎn)A,C重合),可知x的最小值為AC邊上的高,最大值為BC的長(zhǎng);根據(jù)反比例函數(shù)的性質(zhì)即可得答案;(3)由于BC>BA,所以當(dāng)以B為圓心,以大于且小于13為半徑畫圓時(shí),與AC有兩個(gè)交點(diǎn),不符合題意,故根據(jù)點(diǎn)D的唯一性,分兩種情況:①當(dāng)BD為△ABC的邊AC上的高時(shí),D點(diǎn)符合題意;②當(dāng)AB<BD≤BC時(shí),D點(diǎn)符合題意;發(fā)現(xiàn):由于AC>BC>AB,所以使得A、B、C三點(diǎn)到這條直線的距離之和最小的直線就是AC所在的直線.
探究:∵,AB=13,
∴BH=5,
∴,
∴HC=9,,
∴S△ABC=×12×14=84,
故答案為12,15,84;
拓展:解:(1)由三角形面積公式得出:,;
(2)∵,,
∴,
∵AC邊上的高為:,
∴x的取值范圍為:,
∵()隨的增大而減小,
∴時(shí),()的最大值為:15;
當(dāng)時(shí),()的最小值為12;
(3)∵BC>BA,只能確定唯一的點(diǎn)D,
∴當(dāng)以B為圓心,以大于且小于13為半徑畫圓時(shí),與AC有兩個(gè)交點(diǎn),不符合題意,
①當(dāng)BD為△ABC的邊AC上的高時(shí),即x=時(shí),BD與AC有一個(gè)交點(diǎn),符合題意,
②當(dāng)AB<BD≤BC時(shí),即時(shí),BD與AC有一個(gè)交點(diǎn),符合題意,
∴x的取值范圍是或,
發(fā)現(xiàn):
∵AC>BC>AB,
∴AC、BC、AB三邊上的高中,AC邊上的高最短,
∴過(guò)A、B、C三點(diǎn)到這條直線的距離之和最小的直線就是AC所在的直線,最小值為AC邊上的高的長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解同學(xué)們對(duì)垃圾分類知識(shí)的了解程度,增強(qiáng)同學(xué)們的環(huán)保意識(shí)某校數(shù)學(xué)興趣小組設(shè)計(jì)了“垃圾分類知識(shí)及投放情況”問(wèn)卷,并在本校隨機(jī)抽取若干名同學(xué)進(jìn)行了問(wèn)卷測(cè)試,根據(jù)測(cè)試成績(jī)分布情況,將測(cè)試成績(jī)分成A、B、C、D四組,繪制了如下統(tǒng)計(jì)圖表
問(wèn)卷測(cè)試成績(jī)分組表
組別 | 分?jǐn)?shù)/分 |
A | 60<x≤70 |
B | 70<x≤80 |
C | 80<x≤90 |
D | 90<x≤100 |
(1)本次抽樣調(diào)查的樣本總量是 ;
(2)樣本中,測(cè)試成績(jī)?cè)?/span>B組的頻數(shù)是 ,D組的頻率是 ;
(3)樣本中,這次測(cè)試成績(jī)的中位數(shù)落在 組;
(4)如果該校共有880名學(xué)生,請(qǐng)估計(jì)成績(jī)?cè)?/span>90<x≤100的學(xué)生約有 人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線,將拋物線沿軸翻折,得到拋物線.
(1)求出拋物線的函數(shù)表達(dá)式;
(2)現(xiàn)將拋物線向左平移個(gè)單位長(zhǎng)度,平移后得到的新拋物線的頂點(diǎn)為,與軸的交點(diǎn)從左到右依次為,;將拋物線向右也平移個(gè)單位長(zhǎng)度,平移后得到的新拋物線的頂點(diǎn)為,與軸交點(diǎn)從左到右依次為,.在平移過(guò)程中,是否存在以點(diǎn),,,為頂點(diǎn)的四邊形是矩形的情形?若存在,請(qǐng)求出此時(shí)的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是一輛小汽車與墻平行停放的平面示意圖,汽車靠墻一側(cè)OB與墻MN平行且距離為0.8米,一輛小汽車車門寬AO為1.2米,當(dāng)車門打開(kāi)角度∠AOB為40°時(shí),車門是否會(huì)碰到墻?______;(填“是”或“否”)請(qǐng)簡(jiǎn)述你的理由_______.(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:圓中有公共端點(diǎn)的兩條弦組成的折線稱為圓的一條折弦.阿基米德折弦定理:如圖1,AB和BC組成圓的折弦,AB>BC,M是弧ABC的中點(diǎn),MF⊥AB于F,則AF=FB+BC.
如圖2,△ABC中,∠ABC=60°,AB=8,BC=6,D是AB上一點(diǎn),BD=1,作DE⊥AB交△ABC的外接圓于E,連接EA,則∠EAC=_____°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在矩形ABCD中,若CD=5,以D為圓心,DC長(zhǎng)為半徑作⊙D交CA的延長(zhǎng)線于E,過(guò)D作DF⊥AC,垂足為F,且DF=3.
(1)求證:BC是⊙D的切線;
(2)求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)九年級(jí)學(xué)生步行到郊外春游.一班的學(xué)生組成前隊(duì),速度為4km/h ,二班的學(xué)生組成后隊(duì),速度為6km/h .前隊(duì)出發(fā)1h 后,后隊(duì)才出發(fā),同時(shí),后隊(duì)派一名聯(lián)絡(luò)員騎自行車在兩隊(duì)之間不間斷地來(lái)回進(jìn)行聯(lián)絡(luò),他騎車的速度為12km/h.若不計(jì)隊(duì)伍的長(zhǎng)度,如圖,折線ABC ,A-B-C 分別表示后隊(duì),聯(lián)絡(luò)員在行進(jìn)過(guò)程中,離前隊(duì)的路程 與后隊(duì)行進(jìn)時(shí)間x(h) 之間的部分函數(shù)圖象.
(1) 求線段AB 對(duì)應(yīng)的函數(shù)關(guān)系式;
(2) 求點(diǎn)E 的坐標(biāo),并說(shuō)明它的實(shí)際意義;
(3) 聯(lián)絡(luò)員從出發(fā)到他折返后第一次與后隊(duì)相遇的過(guò)程中,當(dāng)x 為何值時(shí),他離前隊(duì)的路程與他離后隊(duì)的路程相等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料,并完成任務(wù).
三角形的外心
定義:三角形三邊的垂直平分線相交于一點(diǎn),這個(gè)點(diǎn)叫做三角形的外心.
如圖1,直線l1,l2,l3分別是邊AB,BC,AC的垂直平分線.
求證:直線l1,l2,l3相交于一點(diǎn).
證明:如圖2,設(shè)l1,l2相交于點(diǎn)O,分別連接OA,OB,OC
∵l1是AB的垂直平分線,
∴OA=OB,(依據(jù)1)
∵l2是BC的垂直平分線,
∴OB=OC,
∴OA=OC,(依據(jù)2)
∵l3是AC的垂直平分線,
∴點(diǎn)O在l3上,(依據(jù)3)
∴直線l1,l2,l3相交于一點(diǎn).
(1)上述證明過(guò)程中的“依據(jù)1”“依據(jù)2”“依據(jù)3”分別指什么?
(2)如圖3,直線l1,l2分別是AB,AC的垂直平分線,直線l1,l2相交于點(diǎn)O,點(diǎn)O是△ABC的外心,l1交BC于點(diǎn)N,l2交BC于點(diǎn)N,分別連接AM、AN、OA、OB、OC.若OA=6cm,△OBC的周長(zhǎng)為22cm,求△AMN的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A的坐標(biāo)是(﹣1,0),點(diǎn)B的坐標(biāo)是(9,0),以AB為直徑作⊙O′,交y軸的負(fù)半軸于點(diǎn)C,連接AC、BC,過(guò)A、B、C三點(diǎn)作拋物線.
(1)求拋物線的解析式;
(2)點(diǎn)E是AC延長(zhǎng)線上一點(diǎn),∠BCE的平分線CD交⊙O′于點(diǎn)D,連結(jié)BD,求直線BD的解析式;
(3)在(2)的條件下,拋物線上是否存在點(diǎn)P,使得∠PDB=∠CBD?如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com