科目:初中數(shù)學(xué) 來源: 題型:
閱讀理解:配方法是中學(xué)數(shù)學(xué)的重要方法,用配方法可求最大(。┲怠
對于任意正實數(shù)a、b,可作如下變形a+b==-+=+ ,
又∵≥0, ∴+ ≥0+,即≥.
(1)根據(jù)上述內(nèi)容,回答下列問題:在≥(a、b均為正實數(shù))中,若ab為定值p,則a+b≥,當(dāng)且僅當(dāng)a、b滿足 時,a+b有最小值.
(2)思考驗證:如圖1,△ABC中,∠ACB=90°,CD⊥AB,垂足為D,CO為AB邊上中線,AD=2a,DB=2b, 試根據(jù)圖形驗證≥成立,并指出等號成立時的條件.
(3)探索應(yīng)用:如圖2,已知A為反比例函數(shù)的圖像上一點,A點的橫坐標(biāo)為1,將一塊三角板的直角頂點放在A處旋轉(zhuǎn),保持兩直角邊始終與x軸交于兩點D、E,F(xiàn)(0,-3)為y軸上一點,連結(jié)DF、EF,求四邊形ADFE面積的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在△ABC中,∠C=90°,AC=12,BC=5,現(xiàn)在AC為軸旋轉(zhuǎn)一周得到一個圓錐。則該圓錐的側(cè)面積為 ( ) (原創(chuàng))
(A)130π (B)90π (C)25π (D)65π
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在△ABC中,∠C為銳角,分別以AB,AC為直徑作半圓,過點B,A,C作,如圖所示.若AB=4,AC=2,S1﹣S2=,則S3﹣S4的值是 (改編)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,兩個同心圓的圓心是O,大圓的半徑為10,小圓的半徑為6,AD是大圓的直徑.大圓的弦AB,BE分別與小圓相切于點C,F.AD,BE相交于點G,連接BD.
(1)求BD 的長;
(2)求∠ABE+2∠D的度數(shù);
(3)求的值.(改編)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,拋物線y=x2﹣x與x軸交于O,A兩點.半徑為1的動圓(⊙P),圓心從O點出發(fā)沿拋物線向靠近點A的方向移動;半徑為2的動圓(⊙Q),圓心從A點出發(fā)沿拋物線向靠近點O的方向移動.兩圓同時出發(fā),且移動速度相等,當(dāng)運動到P,Q兩點重合時同時停止運動.設(shè)點P的橫坐標(biāo)為t.若⊙P與⊙Q相離,則t的取值范圍是_____ ____ .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com