【題目】如圖,△ABC是等腰三角形,AB=AC,點D是AB上一點,過點D作DE⊥BC交BC于點E,交CA延長線于點F.
(1)證明:△ADF是等腰三角形;
(2)若∠B=60°,BD=4,AD=2,求EC的長,
【答案】(1)見解析;(2)EC=4.
【解析】
(1)由AB=AC,可知∠B=∠C,再由DE⊥BC,可知∠F+∠C=90°,∠BDE+∠B=90,然后余角的性質(zhì)可推出∠F=∠BDE,再根據(jù)對頂角相等進行等量代換即可推出∠F=∠FDA,于是得到結(jié)論;
(2)根據(jù)解直角三角形和等邊三角形的性質(zhì)即可得到結(jié)論.
(1)∵AB=AC,
∴∠B=∠C,
∵FE⊥BC,
∴∠F+∠C=90°,∠BDE+∠B=90°,
∴∠F=∠BDE,
而∠BDE=∠FDA,
∴∠F=∠FDA,
∴AF=AD,
∴△ADF是等腰三角形;
(2)∵DE⊥BC,
∴∠DEB=90°,
∵∠B=60°,BD=4,
∴BE=BD=2,
∵AB=AC,
∴△ABC是等邊三角形,
∴BC=AB=AD+BD=6,
∴EC=BC﹣BE=4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,EF∥AD,∠1=∠2,∠BAC=70°.將求∠AGD的過程填寫完整.
∵EF∥AD,(________)
∴∠2=______.(兩直線平行,同位角相等;)
又∵∠1=∠2,(________)
∴∠1=∠3.(________)
∴AB∥DG.(________)
∴∠BAC+______=180°(________)
又∵∠BAC=70°,(________)
∴∠AGD=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將函數(shù)y=(x﹣2)2+1的圖象沿y軸向上平移得到一條新函數(shù)的圖象,其中點A(1,m),B(4,n)平移后的對應(yīng)點分別為點A'、B'.若曲線段AB掃過的面積為9(圖中的陰影部分),則新圖象的函數(shù)表達式是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘輪船位于燈塔B的正西方向A處,且A處與燈塔B相距60海里,輪船沿東北方向勻速航行,到達位于燈塔B的北偏東l5°方向上的C處.
(1)求∠ACB的度數(shù);
(2)求燈塔B到C處的距離.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】騰飛中學(xué)在教學(xué)樓前新建了一座“騰飛”雕塑(如圖①).為了測量雕塑的高度,小明在二樓找到一點C,利用三角板測得雕塑頂端A點的仰角為,底部B點的俯角為,小華在五樓找到一點D,利用三角板測得A點的俯角為(如圖②).若已知CD為10米,請求出雕塑AB的高度.(結(jié)果精確到0.1米,參考數(shù)據(jù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,拋物線y=ax2+bx﹣與x軸交于A(1,0),B(﹣3,0)兩點,現(xiàn)有經(jīng)過點A的直線l:y=kx+b1與y軸交于點C,與拋物線的另個交點為D.
(1)求拋物線的函數(shù)表達式;
(2)若點D在第二象限且滿足CD=5AC,求此時直線1的解析式;在此條件下,點E為直線1下方拋物線上的一點,求△ACE面積的最大值,并求出此時點E的坐標;
(3)如圖,設(shè)P在拋物線的對稱軸上,且在第二象限,到x軸的距離為4,點Q在拋物線上,若以點A,D,P,Q為頂點的四邊形能否成為平行四邊形?若能,請直接寫出點Q的坐標;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某住宅小區(qū)在施工過程中留下了一塊空地,已知AD=8米,CD=6米,∠ADC=90°,AB=26米,BC=24米,小區(qū)為美化環(huán)境,欲在空地上鋪草坪,已知草坪每平方米100元,試問用該草坪鋪滿這塊空地共需花費多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:∠1=∠2,EG平分∠AEC.
(1)如圖①,∠MAE=45°,∠FEG=15°,∠NCE=75°.求證:AB∥CD;
(2)如圖②,∠MAE=140°,∠FEG=30°,當∠NCE= °時,AB∥CD;
(3)如圖②,請你直接寫出∠MAE、∠FEG、∠NCE之間滿足什么關(guān)系時,AB∥CD;
(4)如圖③,請你直接寫出∠MAE、∠FEG、∠NCE之間滿足什么關(guān)系時,AB∥CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了迎接“六一”兒童節(jié).某兒童運動品牌專賣店準備購進甲、乙兩種運動鞋.其中甲、乙兩種運動鞋的進價和售價如下表:
運動鞋 價格 | 甲 | 乙 |
進價(元/雙) | m | m﹣20 |
售價(元/雙) | 240 | 160 |
已知:用3000元購進甲種運動鞋的數(shù)量與用2400元購進乙種運動鞋的數(shù)量相同.
(1)求m的值;
(2)要使購進的甲、乙兩種運動鞋共200雙的總利潤(利潤=售價﹣進價)不少于21700元,且不超過22300元,問該專賣店有幾種進貨方案?該專賣店要獲得最大利潤應(yīng)如何進貨?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com