如圖△ABC中M為BC的中點,N為AM上一點,過N作直線PQ分別交線段AB、AC于P、Q.
(1)當PQ∥BC時,求證:PN=NQ;
(2)當PQ與BC不平行時,數(shù)學公式=______數(shù)學公式.填空并證明.

解:(1)∵PQ∥BC,∴△APN∽△ABM,
=,
同理=,
∵BM=CM,∴PN=NQ

(2)=2,
如圖,過B,C兩點作AM的平行線交直線于D,F(xiàn),
∵BD∥AM,CE∥AM
∴BD∥CE
∴△BDP∽△ANP,△CEQ∽△ANQ
=,=,
∵M為BC的中點,MN∥CE∥BD
∴NM為梯形BDEC的中位線,
∴BD+EC=2MN,
=2
故答案為2.
分析:(1)由平行,可證得,△APN∽△ABM,則=,同理=,從而得出PN=NQ;
(2)分別過B,C兩點作AM的平行線交直線于D,F(xiàn),根據平行線段分線段成比例可證=,=,再證NM為梯形BDEC的中位線,根據梯形的中位線原理可知BD+EC=2MN,從而得出結論.
點評:本題主要考查相似三角形的判定,梯形的中位線原理,平行線平分線段成比例幾個考點,熟練掌握上述定理并靈活運用是解答本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖△ABC中M為BC的中點,N為AM上一點,過N作直線PQ分別交線段AB、AC于P、Q.
(1)當PQ∥BC時,求證:PN=NQ;
(2)當PQ與BC不平行時,
PB
PA
+
QC
QA
=
 
MN
NA
.填空并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:013

如圖 , ABC , EAB中點 , AB=6 , AC=45 , ADE=B , CD=______

[    ]

查看答案和解析>>

科目:初中數(shù)學 來源:2011年湖北省武漢市江漢區(qū)中考數(shù)學模擬試卷(三)(解析版) 題型:解答題

如圖△ABC中M為BC的中點,N為AM上一點,過N作直線PQ分別交線段AB、AC于P、Q.
(1)當PQ∥BC時,求證:PN=NQ;
(2)當PQ與BC不平行時,=______.填空并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖, △ABC中,P為AB上一點,在下列四個條件中:①∠ACP=∠B;②∠APC=∠ACB;③AC=AP?AB;④AB?CP=AP?CB,能滿足△APC和△ACB相似的條件是(    ).

   A .①②④          B.①③④

C.②③④           D.①②③

查看答案和解析>>

同步練習冊答案