若正n邊形的一個(gè)外角為45°,則n=         
8.

試題分析:根據(jù)正多邊形的外角和的特征即可求出多邊形的邊數(shù).
試題解析:n=360°÷45°=8.
【考點(diǎn)】多邊形內(nèi)角與外角.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,矩形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,DE∥AC,CE∥BD.
(1)求證:四邊形OCED為菱形;
(2)連接AE、BE,AE與BE相等嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,點(diǎn)A是線段BC上一點(diǎn),△ABD和△ACE都是等邊三角形.
(1)連結(jié)BE,CD,求證:BE=CD;
(2)如圖2,將△ABD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得到△AB′D′.
①當(dāng)旋轉(zhuǎn)角為     度時(shí),邊AD′落在AE上;
②在①的條件下,延長(zhǎng)DD’交CE于點(diǎn)P,連接BD′,CD′.當(dāng)線段AB、AC滿足什么數(shù)量關(guān)系時(shí),△BDD′與△CPD′全等?并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,將矩形ABCD沿對(duì)角線AC對(duì)折,使△ABC落在△ACE的位置,且CE與AD相交于點(diǎn)F.
(1)求證:AF=CF;
(2)若AB=4,BC=6,求△AFC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

閱讀下列材料:
問題:在平面直角坐標(biāo)系中,一張矩形紙片OBCD按圖1所示放置。已知OB=10,BC=6,
將這張紙片折疊,使點(diǎn)O落在邊CD上,記作點(diǎn)A,折痕與邊OD(含端點(diǎn))交于點(diǎn)E,與邊OB(含端點(diǎn))或其延長(zhǎng)線交于點(diǎn)F,求點(diǎn)A的坐標(biāo).
小明在解決這個(gè)問題時(shí)發(fā)現(xiàn):要求點(diǎn)A的坐標(biāo),只要求出線段AD的長(zhǎng)即可,連接OA,設(shè)折痕EF所在直線對(duì)應(yīng)的函數(shù)表達(dá)式為:,于是有,所以在Rt△EOF中,得到,在Rt△AOD中,利用等角的三角函數(shù)值相等,就可以求出線段DA的長(zhǎng)(如圖1)

請(qǐng)回答:
(1)如圖1,若點(diǎn)E的坐標(biāo)為,直接寫出點(diǎn)A的坐標(biāo);
(2)在圖2中,已知點(diǎn)O落在邊CD上的點(diǎn)A處,請(qǐng)畫出折痕所在的直線EF(要求:尺規(guī)作圖,保留作圖痕跡,不寫做法);
參考小明的做法,解決以下問題:
(3)將矩形沿直線折疊,求點(diǎn)A的坐標(biāo);
(4)將矩形沿直線折疊,點(diǎn)F在邊OB上(含端點(diǎn)),直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,O為矩形ABCD對(duì)角線的交點(diǎn),DE∥AC,CE∥BD.
(1)試判斷四邊形OCED的形狀,并說(shuō)明理由;
(2)若AB=6,BC=8,求四邊形OCED的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

?ABCD中,已知∠B=60°,AB=8cm,BC=6cm,則它的面積等于______cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在四邊形ABCD中,AB∥CD,要使得四邊形ABCD是平行四邊形,應(yīng)添加的條件是         (只填寫一個(gè)條件,不使用圖形以外的字母和線段).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

點(diǎn)A、B、C是平面內(nèi)不在同一條直線上的三點(diǎn),點(diǎn)D是平面內(nèi)任意一點(diǎn),若A、B、C、D四點(diǎn)恰能構(gòu)成一個(gè)平行四邊形,則在平面內(nèi)符合這樣條件的點(diǎn)D有( 。
A.1個(gè)        B.2個(gè)        C.3個(gè)        D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案