【題目】如圖,把一張兩邊分別平行的紙條折成如圖所示,EF為折痕,ED交BF于點(diǎn)G,且∠EFB=48°,則下列結(jié)論: ①∠DEF=48°;②∠AED=84°;③∠BFC=84°;④∠DGF=96°,其中正確的個(gè)數(shù)有( )
A. 4個(gè)B. 3個(gè)C. 2個(gè)D. 1個(gè)
【答案】A
【解析】
根據(jù)平行線的性質(zhì)求出∠D'EF=∠EFB=48°,根據(jù)折疊得出∠D'EF=∠DEF,∠EFC=∠EFC',再逐個(gè)判斷即可.
∵AE∥BG,∠EFB=48°,∴∠D'EF=∠EFB=48°,根據(jù)折疊得:∠DEF=∠D'EF=48°,∴①正確;
∵∠DEF=∠D'EF=48°,∴∠AED=180°-2∠D'EF=84°,∴②正確;
根據(jù)折疊得出∠EFC=∠EF C'.
∵∠D'EF=∠EFB=48°,∴∠BFC=180°-2×48°=84°,∴③正確;
∵DE∥CF,∴∠DGF=180°﹣∠GFC=180°-84°=96,∴④正確;
即正確的個(gè)數(shù)是4個(gè).
故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(4,0)及在第一象限的動(dòng)點(diǎn)P(x,y),且x+y=5,0為坐標(biāo)原點(diǎn),設(shè)△OPA的面積為S.
(1)求S關(guān)于x的函數(shù)表達(dá)式;
(2)求x的取值范圍;
(3)當(dāng)S=4時(shí),求P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊△ABC中,M是AC上一點(diǎn),N是BC上一點(diǎn),且AM=BN,∠MBC=25°,AN與BM交于點(diǎn)O,則∠MON的度數(shù)為( )
A. 110° B. 105° C. 90° D. 85°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知12+22+32+…+n2=n(n+1)(2n+1)(n為正整數(shù)).
求22+42+62+…+502的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合與實(shí)踐:在學(xué)習(xí)了《7.4實(shí)踐與探索》之后,小亮買(mǎi)了若干塊完全相同的長(zhǎng)方形拼圖(圖1),第一次他用2塊圖1的長(zhǎng)方形拼出了圖2所示的正方形,第二次他又用4塊圖1的長(zhǎng)方形拼出了圖3所示的正方形(中間留有一個(gè)正方形小洞,即陰影區(qū)域),經(jīng)過(guò)測(cè)量,他發(fā)現(xiàn)圖3的大正方形的邊長(zhǎng)為.
(1)請(qǐng)你幫小亮求出圖1中長(zhǎng)方形的長(zhǎng)和寬;
(2)請(qǐng)你參照?qǐng)D3,用圖1的長(zhǎng)方形拼出一個(gè)面積為的正方形(中間留有一個(gè)正方形小洞),請(qǐng)畫(huà)出你拼出的大正方形(要求畫(huà)出兩個(gè)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,將直角三角形ACB, ,AC=6,沿CB方向平移得直角三角形DEF,BF=2,DG=,陰影部分面積為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=mx+n與雙曲線y= 相交于A(﹣1,2)、B(2,b)兩點(diǎn),與y軸相交于點(diǎn)C.
(1)求m,n的值;
(2)若點(diǎn)D與點(diǎn)C關(guān)于x軸對(duì)稱,求△ABD的面積;
(3)在坐標(biāo)軸上是否存在異于D點(diǎn)的點(diǎn)P,使得S△PAB=S△DAB?若存在,直接寫(xiě)出P點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,△ABC中,D、E、F三點(diǎn)分別在AB,AC,BC三邊上,過(guò)點(diǎn)D的直線與線段EF的交點(diǎn)為點(diǎn)H,∠1+∠2=180°,∠3=∠C.
(1)求證:DE∥BC;
(2)在以上條件下,若△ABC及D,E兩點(diǎn)的位置不變,點(diǎn)F在邊BC上運(yùn)動(dòng)使得∠DEF的大小發(fā)生變化,保證點(diǎn)H存在且不與點(diǎn)F重合,探究:要使∠1=∠BFH成立,請(qǐng)說(shuō)明點(diǎn)F應(yīng)該滿足的位置條件,在圖2中畫(huà)出符合條件的圖形并說(shuō)明理由.
(3)在(2)的條件下,若∠C=α,直接寫(xiě)出∠BFH的大小 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,對(duì)稱軸平行于y軸的拋物線與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C,過(guò)C作CD∥x軸,與拋物線交于點(diǎn)D.若OA=1,CD=4,則線段AB的長(zhǎng)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com