【題目】如圖,直線與x軸,y軸分別交于點A,點B,兩動點D,E分別從點A,點B同時出發(fā)向點O運動(運動到點O停止),運動速度分別是1個單位長度/秒和個單位長度/秒,設運動時間為t秒,以點A為頂點的拋物線經過點E,過點E作x軸的平行線,與拋物線的另一個交點為點G,與AB相交于點F.
(1)求點A,點B的坐標;
(2)用含t的代數式分別表示EF和AF的長;
(3)當四邊形ADEF為菱形時,試判斷△AFG與△AGB是否相似,并說明理由.
(4)是否存在t的值,使△AGF為直角三角形?若存在,求出這時拋物線的解析式;若不存在,請說明理由.
【答案】(1)A(2,0),B(0,);(2)EF=t,AF=4﹣2t;(3)相似;(4).
【解析】(1)在直線中,令y=0可得,解得x=2,令x=0可得y=,∴A為(2,0),B為(0,);
(2)由(1)可知OA=2,OB=,∴tan∠ABO==,∴∠ABO=30°,∵運動時間為t秒,∴BE=t,∵EF∥x軸,∴在Rt△BEF中,EF=BEtan∠ABO=BE=t,BF=2EF=2t,在Rt△ABO中,OA=2,OB=,∴AB=4,∴AF=4﹣2t;
(3)相似.理由如下:
當四邊形ADEF為菱形時,則有EF=AF,即t=4﹣2t,解得t=,∴AF=4﹣2t=4﹣=,OE=OB﹣BE==,如圖,過G作GH⊥x軸,交x軸于點H,則四邊形OEGH為矩形,∴GH=OE=,又EG∥x軸,拋物線的頂點為A,∴OA=AH=2,在Rt△AGH中,由勾股定理可得==,又AFAB=×4=,∴AFAB=AG2,即,且∠FAG=∠GAB,∴△AFG∽△AGB;
(4)存在,∵EG∥x軸,∴∠GFA=∠BAO=60°,又G點不能在拋物線的對稱軸上,∴∠FGA≠90°,∴當△AGF為直角三角形時,則有∠FAG=90°,又∠FGA=30°,∴FG=2AF,∵EF=t,EG=4,∴FG=4﹣t,且AF=4﹣2t,∴4﹣t=2(4﹣2t),解得t=,即當t的值為秒時,△AGF為直角三角形,此時OE=OB﹣BE===,∴E點坐標為(0,),∵拋物線的頂點為A,∴可設拋物線解析式為,把E點坐標代入可得=4a,解得a=,∴拋物線解析式為.
科目:初中數學 來源: 題型:
【題目】如圖,拋物線經過點A(﹣3,0),點C(0,4),作CD∥x軸交拋物線于點D,作DE⊥x軸,垂足為E,動點M從點E出發(fā)在線段EA上以每秒2個單位長度的速度向點A運動,同時動點N從點A出發(fā)在線段AC上以每秒1個單位長度的速度向點C運動,當一個點到達終點時,另一個點也隨之停止運動,設運動時間為t秒.
(1)求拋物線的解析式;
(2)設△DMN的面積為S,求S與t的函數關系式;
(3)①當MN∥DE時,直接寫出t的值;
②在點M和點N運動過程中,是否存在某一時刻,使MN⊥AD?若存在,直接寫出此時t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】點P為直線 外一點,點A、B、C為直線 上三點,PA=4cm,PB=5cm,PC=2cm,則點P到直線 的距離為( )
A.4cm
B.5cm
C.小于2cm
D.不大于2cm
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線經過原點O,頂點為A(1,1),且與直線y=x﹣2交于B,C兩點.
(1)求拋物線的解析式及點C的坐標;
(2)求證:△ABC是直角三角形;
(3)若點N為x軸上的一個動點,過點N作MN⊥x軸與拋物線交于點M,則是否存在以O,M,N為頂點的三角形與△ABC相似?若存在,請求出點N的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點A、B的坐標分別為(8,0)、(0,),C是AB的中點,過點C作y軸的垂線,垂足為D,動點P從點D出發(fā),沿DC向點C勻速運動,過點P作x軸的垂線,垂足為E,連接BP、EC.當BP所在直線與EC所在直線第一次垂直時,點P的坐標為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AC和BD相交于O點,若OA=OD,用“SAS”證明△AOB≌△DOC還需( )
A.AB=DC
B.OB=OC
C.∠C=∠D
D.∠AOB=∠DOC
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com