【題目】如圖所示,在正方形ABCD中,M為AB的中點,N為AD上的一點,且AN= AD,試猜測△CMN是什么三角形,請證明你的結(jié)論.(提示:正方形的四條邊都相等,四個角都是直角)

【答案】解:△CMN是直角三角形.理由如下: 設(shè)正方形ABCD的邊長為4a,則AB=BC=CD=AD=4a.
∵M是AB的中點,
∴AM=BM=2a.
∵AN= AD,AD=4a,
∴AN=a,DN=3a.
∵在Rt△AMN中,滿足AM2+AN2=MN2 , 且AM=2a,AN=a,
∴MN= a.
同理可得:MC= a,NC=5a.
∵MN2+MC2=( a)2+( a)2=25a2 , NC2=(5a)2=25a2
∴MN2+MC2=NC2 ,
∴△CMN是直角三角形
【解析】可設(shè)正方形ABCD的邊長為4a,利用勾股定理分別求出NC,MN,CM的值,計算得出MN2+MC2=NC2 , 根據(jù)勾股定理的逆定理可判定△CMN是直角三角形.
【考點精析】利用勾股定理的概念和勾股定理的逆定理對題目進行判斷即可得到答案,需要熟知直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;如果三角形的三邊長a、b、c有下面關(guān)系:a2+b2=c2,那么這個三角形是直角三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若(x﹣1)(x+3)=ax2+bx+c,則a=、b=、c=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:
(1)(-28 )-(-22)-(-17 )+(-22);
(2)(-100)÷(-5)2-(- )×[34+(-32)].

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明身高為140cm,比他高20cm的哥哥的身高為_______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了加強對校內(nèi)外安全監(jiān)控,創(chuàng)建荔灣平安校園,某學(xué)校計劃增加15臺監(jiān)控攝像設(shè)備,現(xiàn)有甲、乙兩種型號的設(shè)備,其中每臺價格,有效監(jiān)控半徑如表所示,經(jīng)調(diào)查,購買1臺甲型設(shè)備比購買1臺乙型設(shè)備多150元,購買2臺甲型設(shè)備比購買3臺乙型設(shè)備少400元.

甲型

乙型

價格(元/臺)

a

b

有效半徑(米/臺)

150

100


(1)求a、b的值.
(2)若購買該批設(shè)備的資金不超過11000元,且兩種型號的設(shè)備均要至少買一臺,學(xué)校有哪幾種購買方案?
(3)在(2)問的條件下,若要求監(jiān)控半徑覆蓋范圍不低于1600米,為了節(jié)約資金,請你設(shè)計一種最省錢的購買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P是∠AOB的邊OB上的一點,過點P畫OB的垂線,交OA于點C;

(1)①過點C畫OB的平行線CD;②過點P畫OA的垂線,垂足為H;
(2)線段PH的長度是點P到的距離,線段的長度是點C到直線OB的距離.線段PC、PH、OC這三條線段大小關(guān)系是(用“<”號連接).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程ax2+4x+20有兩個相等的實數(shù)根,則a的值是(  )

A.2B.0C.1D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市人口數(shù)為190.1萬人,用科學(xué)記數(shù)法表示該市人口數(shù)為(
A.1.901×106
B.19.01×105
C.190.1×104
D.1901×103

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在邊長為1的小正方形組成的方格紙中,若多邊形的各頂點都在方格紙的格點(橫豎格子線的交錯點)上,這樣的多邊形稱為格點多邊形.記格點多邊形內(nèi)的格點數(shù)為a,邊界上的格點數(shù)為b,則格點多邊形的面積可表示為,其中m,n為常數(shù).

(1)在下面的方格中各畫出一個面積為6的格點多邊形,依次為三角形、平行四邊形(非菱形)、菱形;

(2)利用(1)中的格點多邊形確定m,n的值.

查看答案和解析>>

同步練習(xí)冊答案