(2010•攀枝花)如圖所示,是二次函數(shù)y=ax2-bx+2的大致圖象,則函數(shù)y=-ax+b的圖象不經(jīng)過(guò)( )

A.第一象限
B.第二象限
C.第三象限
D.第四象限
【答案】分析:先根據(jù)二次函數(shù)圖象的開口及對(duì)稱軸所在的象限判斷出a、b的符號(hào),再根據(jù)一次函數(shù)圖象的性質(zhì)進(jìn)行判斷即可.
解答:解:∵二次函數(shù)y=ax2-bx+2的圖象開口向上,
∴a>0;
∵對(duì)稱軸x=-<0,
∴b<0;
因此-a<0,b<0
∴綜上所述,函數(shù)y=-ax+b的圖象過(guò)二、三、四象限.
即函數(shù)y=-ax+b的圖象不經(jīng)過(guò)第一象限.
故選A.
點(diǎn)評(píng):解答此題的關(guān)鍵是熟知二次函數(shù)及一次函數(shù)的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(11)(解析版) 題型:解答題

(2010•攀枝花)如圖所示,已知直線y=x與拋物線y=ax2+b(a≠0)交于A(-4,-2),B(6,3)兩點(diǎn).拋物線與y軸的交點(diǎn)為C.
(1)求這個(gè)拋物線的解析式;
(2)在拋物線上存在點(diǎn)M,是△MAB是以AB為底邊的等腰三角形,求點(diǎn)M的坐標(biāo);
(3)在拋物線上是否存在點(diǎn)P使得△PAC的面積是△ABC面積的?若存在,試求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2010•攀枝花)如圖所示,已知直線y=x與拋物線y=ax2+b(a≠0)交于A(-4,-2),B(6,3)兩點(diǎn).拋物線與y軸的交點(diǎn)為C.
(1)求這個(gè)拋物線的解析式;
(2)在拋物線上存在點(diǎn)M,是△MAB是以AB為底邊的等腰三角形,求點(diǎn)M的坐標(biāo);
(3)在拋物線上是否存在點(diǎn)P使得△PAC的面積是△ABC面積的?若存在,試求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年四川省攀枝花市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•攀枝花)如圖所示,已知直線y=x與拋物線y=ax2+b(a≠0)交于A(-4,-2),B(6,3)兩點(diǎn).拋物線與y軸的交點(diǎn)為C.
(1)求這個(gè)拋物線的解析式;
(2)在拋物線上存在點(diǎn)M,是△MAB是以AB為底邊的等腰三角形,求點(diǎn)M的坐標(biāo);
(3)在拋物線上是否存在點(diǎn)P使得△PAC的面積是△ABC面積的?若存在,試求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年全國(guó)中考數(shù)學(xué)試題匯編《反比例函數(shù)》(01)(解析版) 題型:選擇題

(2010•攀枝花)如圖:等腰直角三角形ABC位于第一象限,AB=AC=2,直角頂點(diǎn)A在直線y=x上,其中A點(diǎn)的橫坐標(biāo)為1,且兩條直角邊AB、AC分別平行于x軸、y軸,若雙曲線y=(k≠0)與△ABC有交點(diǎn),則k的取值范圍是( )

A.1<k<2
B.1≤k≤3
C.1≤k≤4
D.1≤k<4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(04)(解析版) 題型:選擇題

(2010•攀枝花)如圖所示.△ABC內(nèi)接于⊙O,若∠OAB=28°,則∠C的大小是( )

A.56°
B.62°
C.28°
D.32°

查看答案和解析>>

同步練習(xí)冊(cè)答案