【題目】如圖,在平面直角坐標(biāo)系中,邊長(zhǎng)為1的正方形OA1B1C的對(duì)角線(xiàn)A1C和OB1交于點(diǎn)M1;以M1A1為對(duì)角線(xiàn)作第二個(gè)正方形A2A1B2M,對(duì)角線(xiàn)A1M1和A2B2交于點(diǎn)M2;以M2A1為對(duì)角線(xiàn)作第三個(gè)正方形A3A1B3M2,對(duì)角線(xiàn)A1M2和A3B3交于點(diǎn)M3;..依此類(lèi)推,這樣作的第6個(gè)正方形對(duì)角線(xiàn)交點(diǎn)的坐標(biāo)為____.
【答案】
【解析】
根據(jù)正方形的性質(zhì)得到OM1=M1A1,∠OM1A1=90°,設(shè)OM1=M1A1=x,由勾股定理得到方程x2+x2=12,解方程求出x的值,同理可以求出其它正方形的邊長(zhǎng),依此類(lèi)推可求出A6A7=A7M6=,計(jì)算出OA7的長(zhǎng)度,即可得到答案.
正方形OA1B1C,
∴OM1=M1A1,∠OM1A1=90°,
設(shè)OM1=M1A1=x,
由勾股定理得:x2+x2=12,
解得:x=,
同理可求出OA2=A2M1= ,
A2M2=,A2A3=,…A6A7=A7M6=,
∴OA7=1.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)與軸、軸分別交于,兩點(diǎn),是的中點(diǎn),是上一點(diǎn),四邊形是菱形,則的面積為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某機(jī)動(dòng)車(chē)出發(fā)前油箱內(nèi)有油42L,行駛?cè)舾尚r(shí)后,途中在加油站加油若干升,油箱中余油量Q(L)與行駛時(shí)間t(h)之間的函數(shù)關(guān)系如圖所示,根據(jù)圖回答問(wèn)題:
(1)機(jī)動(dòng)車(chē)行駛 h后加油;
(2)加油前油箱余油量Q與行駛時(shí)間t的函數(shù)關(guān)系式是 ;
(3)中途加油 L;
(4)如果加油站距目的地還有230km,車(chē)速為40km/h,要到達(dá)目的地,油箱中的油是否夠用?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】張師傅駕駛某種型號(hào)轎車(chē)從甲地去乙地,該種型號(hào)轎車(chē)每百公里油耗為10升(每行駛100公里需消耗10升汽油).途中在加油站加了一次油,加油前,根據(jù)儀表盤(pán)顯示,油箱中還剩4升汽油.假設(shè)加油前轎車(chē)以80公里/小時(shí)的速度勻速行駛,加油后轎車(chē)以90公里/小時(shí)的速度勻速行駛(不計(jì)加油時(shí)間),已知油箱中剩余油量y(升)與行駛時(shí)間t(小時(shí))之間的函數(shù)關(guān)系如圖所示.
(1) 加油前,該轎車(chē)每小時(shí)消耗汔油 升;加油后,該轎車(chē)每小時(shí)消耗汔油 升;
(2)求加油前油箱剩余油量y(升)與行駛時(shí)間t(小時(shí))之間的函數(shù)表達(dá)式;
(3)求張師傅在加油站加了多少升汽油.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形放置在平面直角坐標(biāo)系上,點(diǎn)分別在軸,軸的正半軸上,點(diǎn)的坐標(biāo)是,其中,反比例函數(shù)y=的圖象交交于點(diǎn).
(1)_____(用的代數(shù)式表示)
(2)設(shè)點(diǎn)為該反比例函數(shù)圖象上的動(dòng)點(diǎn),且它的橫坐標(biāo)恰好等于,連結(jié).
①若的面積比矩形面積多8,求的值。
②現(xiàn)將點(diǎn)繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到點(diǎn),若點(diǎn)恰好落在軸上,直接寫(xiě)出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AD=8,AB=4,將此矩形折疊,使點(diǎn)B與點(diǎn)D重合,折痕為EF,連接BE、DF,以B為原點(diǎn)建立平面直角坐標(biāo)系,使BC、BA邊分別在x軸和y軸的正半軸上.
(1)試判斷四邊形BFDE的形狀,并說(shuō)明理由;
(2)求直線(xiàn)EF的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)、的坐標(biāo)分別為,,直線(xiàn)與軸交于點(diǎn)、與軸交于點(diǎn).
(1)直線(xiàn)解析式為,求直線(xiàn)與交點(diǎn)的坐標(biāo);
(2)四邊形的面積是________;
(3)求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)x與直線(xiàn)y垂直于點(diǎn)O,點(diǎn)B,C在直線(xiàn)x上,點(diǎn)A在直線(xiàn)x外,連接AC,AB得到△ABC.
(1)將△ABC沿直線(xiàn)x折疊,使點(diǎn)A落在點(diǎn)D處,延長(zhǎng)DC交AB于點(diǎn)E,EF平分∠AED交直線(xiàn)x于點(diǎn)F.
①若∠EFB=25°,∠DEF=10°,則∠DCF=______
②若∠ACF-∠AEF=18°,求∠EFB的度數(shù);
(2)過(guò)點(diǎn)C作MN平行于AB交直線(xiàn)y于點(diǎn)N,CP平分∠BCM,HP平分∠AHY,當(dāng)點(diǎn)C從點(diǎn)O沿直線(xiàn)x向左運(yùn)動(dòng)時(shí),∠CPH的度數(shù)是否發(fā)生變化?若不變求其度數(shù);若變化,求其變化范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:在正方形網(wǎng)格中有一個(gè)△ABC,按要求進(jìn)行下列作圖(只能借助于網(wǎng)格):
(1)畫(huà)出△ABC中BC邊上的高AD;
(2)畫(huà)出先將△ABC向右平移6格,再向上平移3格后的△A1B1C1;
(3)若格點(diǎn)△PAB與格點(diǎn)△PBC的面積相等,則這樣的點(diǎn)P共______個(gè).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com