為解方程(x2-1)2-5(x2-1)+4=0,我們可以將x2-1視為一個整體,然后設x2-1=y(tǒng),則(x2-1)2=y(tǒng)2,原方程化為y2-5y+4=0,解得y1=1,y2=4.

當y=1時,x2-1=1,∴x2=2,∴x=

當y=4時,x2-1=4,∴x2=5,∴x=

∴原方程的解為x1,x2,x3,x4=

問題:

1.在原方程得到方程y2-5y+4=0的過程中,利用________法達到了降次的目的,體現(xiàn)了________的數(shù)學思想.

2.解方程x4-x2-6=0.

答案:
解析:

(1)換元,轉(zhuǎn)化;(2)x1,x2


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下面材料:解答問題

為解方程 (x2-1)2-5 (x2-1)+4=0,我們可以將(x2-1)看作一個整體,然后設 x2-1=y(tǒng),那么原方程可化為  y2-5y+4=0,解得y1=1,y2=4.

當y=1時,x2-1=1,∴x2=2,∴x=±;當y=4時,x2-1=4,∴x2=5,∴x=±,

故原方程的解為  x1=,x2=-,x3=,x4=-.

上述解題方法叫做換元法;

請利用換元法解方程.(x 2-x)2 - 4 (x 2-x)-12=0    

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012年山東省無棣縣九年級上學期期中考試數(shù)學卷 題型:解答題

(10分)閱讀下面材料:解答問題
為解方程 (x2-1)2-5 (x2-1)+4=0,我們可以將(x2-1)看作一個整體,然后設 x2-1=y(tǒng),那么原方程可化為  y2-5y+4=0,解得y1=1,y2=4.
當y=1時,x2-1=1,∴x2=2,∴x=±;當y=4時,x2-1=4,∴x2=5,∴x=±,
故原方程的解為  x1=,x2=-,x3=,x4=-.
上述解題方法叫做換元法;
請利用換元法解方程.(x 2-x)2 - 4 (x 2-x)-12=0    

查看答案和解析>>

科目:初中數(shù)學 來源:2013屆福建省長汀縣城區(qū)五校九年級第一次月考聯(lián)考數(shù)學試卷(帶解析) 題型:解答題

閱讀下面材料:解答問題
為解方程 (x2-1)2-5 (x2-1)+4=0,我們可以將(x2-1)看作一個整體,然后設 x2-1=y(tǒng),那么原方程可化為  y2-5y+4=0,
解得y1=1,y2=4.當y=1時,x2-1=1,
∴x2=2,
∴x=±;當y=4時,x2-1=4,
∴x2=5,
∴x=±,
故原方程的解為  x1,x2=-,x3,x4=-
上述解題方法叫做換元法;
請利用換元法解方程:(x 2-x)2 - 4 (x 2-x)-12=0

查看答案和解析>>

科目:初中數(shù)學 來源:2012-2013學年福建省長汀縣城區(qū)五校九年級第一次月考聯(lián)考數(shù)學試卷(解析版) 題型:解答題

閱讀下面材料:解答問題

為解方程 (x2-1)2-5 (x2-1)+4=0,我們可以將(x2-1)看作一個整體,然后設 x2-1=y(tǒng),那么原方程可化為  y2-5y+4=0,

解得y1=1,y2=4.當y=1時,x2-1=1,

∴x2=2,

∴x=±;當y=4時,x2-1=4,

∴x2=5,

∴x=±,

故原方程的解為  x1,x2=-,x3,x4=-

上述解題方法叫做換元法;

請利用換元法解方程:(x 2-x)2 - 4 (x 2-x)-12=0

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012年山東省無棣縣九年級上學期期中考試數(shù)學卷 題型:解答題

(10分)閱讀下面材料:解答問題

為解方程 (x2-1)2-5 (x2-1)+4=0,我們可以將(x2-1)看作一個整體,然后設 x2-1=y(tǒng),那么原方程可化為  y2-5y+4=0,解得y1=1,y2=4.

當y=1時,x2-1=1,∴x2=2,∴x=±;當y=4時,x2-1=4,∴x2=5,∴x=±,

故原方程的解為  x1=,x2=-,x3=,x4=-.

上述解題方法叫做換元法;

請利用換元法解方程.(x 2-x)2 - 4 (x 2-x)-12=0    

 

查看答案和解析>>

同步練習冊答案