分析 (1)將點A、B的坐標代入拋物線的解析式,可求得a=-1,b=6,從而可求得拋物線的解析式;
(2)設點P的坐標為(a,-a2+6a-5),然后求得直線CP的解析式為y=(6-a)x-5,令y=0,從而可求得直線CP與x軸的交點坐標,最后根據(jù)S△PAB=S△PAC列出關于a的方程,從而可求得a=4;
(3)當∠MED=90°時,點E,B,M在一條直線上,此種情況不成立,同理當∠MDE=90°時,不成立,當∠DME=90°時,設直線PC與對稱軸交于點N,首先證明△ADM≌△NEM,得到MN=AM,從而求得點N坐標為(3,2);其次利用點N、點C坐標,求出直線PC的解析式;最后聯(lián)立直線PC與拋物線的解析式,求出點P的坐標.
解答 解:(1)∵將點A、B的坐標代入得:$\left\{\begin{array}{l}{a+b-5=0}\\{25a+5b-5=0}\end{array}\right.$,解得:a=-1,b=6,
∴拋物線的解析式為y=-x2+6x-5.
(2)如圖1所示:記PC與x軸的交點為F.
∵令x=0,得y=-5,
∴C(0,-5).
設直線PC的解析式為y=kx-5,點P的坐標為(a,-a2+6a-5).
將點P的坐標代入PC的解析式得:ka=-a2+6a-5.
解得:a=0(舍去),k=6-a.
∴直線PC的解析式為y=(6-a)x-5.
令y=0得:(6-a)x-5=0.
解得:x=$\frac{5}{6-a}$.
∴點F的坐標($\frac{5}{6-a}$,0).
∵S△PAB=S△PAC,
∴$\frac{1}{2}$($\frac{5}{6-a}$-1)(-a2+6a-5+5)=$\frac{1}{2}×4$×(-a2+6a-5).
解得:整理得:a2-5a+4=0.
解得:a=1(舍去),a=4.
當a=4時,-a2+6a-5=-16+24-5=3.
∴點P的坐標為(4,3).
(3)∵拋物線解析式為y=-x2+6x-5,
∴對稱軸是直線x=3.
∴M(3,0).
①當∠MED=90°時,點E,B,M在一條直線上,此種情況不成立;
②同理:當∠MDE=90°時,不成立;
③當∠DME=90°時,如圖2所示:
設直線PC與對稱軸交于點N,
∵EM⊥DM,MN⊥AM,
∴∠EMN=∠DMA.
∵∠MDE=45°,∠EDA=90°,
∴∠MDA=135°.
∵∠MED=45°,
∴∠NEM=135°.
∴∠ADM=∠NEM=135°.
在△ADM與△NEM中,$\left\{\begin{array}{l}{∠EMN=∠DMA}\\{EM=DM}\\{∠ADM=∠NEM=135°}\end{array}\right.$,
∴△ADM≌△NEM(ASA).
∴MN=MA.
∴MN=MA=2,
∴N(3,2).
設直線PC解析式為y=kx+b,將點N(3,2),C(0,-5)代入直線的解析式得;$\left\{\begin{array}{l}{3k+b=2}\\{b=-5}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=\frac{7}{3}}\\{b=-5}\end{array}\right.$.
∴直線PC的解析式為y=$\frac{7}{3}$x-5.
將y=$\frac{7}{3}$x-5代入拋物線解析式得:$\frac{7}{3}$x-5=-x2+6x-5,解得:x=0或x=$\frac{11}{3}$,
當x=0時,交點為點C;當x=$\frac{11}{3}$時,y=$\frac{7}{3}$x-5=$\frac{32}{9}$.
∴P($\frac{11}{3}$,$\frac{32}{9}$).
綜上所述,△MDE能成為等腰直角三角形,此時點P坐標為($\frac{11}{3}$,$\frac{32}{9}$).
點評 本題主要考查的是二次函數(shù)的綜合應用,解答本題主要應用了待定系數(shù)法求一次函數(shù)和二次函數(shù)的解析式、等腰直角三角形的性質(zhì)、全等三角形的性質(zhì)和判定,證得△ADM≌△NEM(ASA),從而得到點N的坐標是解題的關鍵.
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com