(2008•孝感)Rt△ABC中,∠C=90°,AC=8,BC=6,兩等圓⊙A,⊙B外切,那么圖中兩個扇形(即陰影部分)的面積之和為( )

A.π
B.π
C.π
D.π
【答案】分析:已知Rt△ABC中,∠ACB=90°,AC=8,BC=6,則根據勾股定理可知AB=10,兩個扇形的面積的圓心角之和為90度,利用扇形面積公式即可求解.
解答:解:∵Rt△ABC中,∠ACB=90°,AC=8,BC=6,
∴AB==10,
∴S陰影部分==
故選A.
點評:本題主要考查勾股定理的使用及扇形面積公式的靈活運用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《四邊形》(06)(解析版) 題型:解答題

(2008•孝感)銳角△ABC中,BC=6,S△ABC=12,兩動點M,N分別在邊AB,AC上滑動,且MN∥BC,以MN為邊向下作正方形MPQN,設其邊長為x,正方形MPQN與△ABC公共部分的面積為y(y>0)
(1)△ABC中邊BC上高AD=______;
(2)當x=______時,PQ恰好落在邊BC上(如圖1);
(3)當PQ在△ABC外部時(如圖2),求y關于x的函數(shù)關系式(注明x的取值范圍),并求出x為何值時y最大,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2008•孝感)銳角△ABC中,BC=6,S△ABC=12,兩動點M,N分別在邊AB,AC上滑動,且MN∥BC,以MN為邊向下作正方形MPQN,設其邊長為x,正方形MPQN與△ABC公共部分的面積為y(y>0)
(1)△ABC中邊BC上高AD=______;
(2)當x=______時,PQ恰好落在邊BC上(如圖1);
(3)當PQ在△ABC外部時(如圖2),求y關于x的函數(shù)關系式(注明x的取值范圍),并求出x為何值時y最大,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:2010年四川省成都市武侯區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

(2008•孝感)銳角△ABC中,BC=6,S△ABC=12,兩動點M,N分別在邊AB,AC上滑動,且MN∥BC,以MN為邊向下作正方形MPQN,設其邊長為x,正方形MPQN與△ABC公共部分的面積為y(y>0)
(1)△ABC中邊BC上高AD=______;
(2)當x=______時,PQ恰好落在邊BC上(如圖1);
(3)當PQ在△ABC外部時(如圖2),求y關于x的函數(shù)關系式(注明x的取值范圍),并求出x為何值時y最大,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:2009年中考模擬試卷(解析版) 題型:解答題

(2008•孝感)銳角△ABC中,BC=6,S△ABC=12,兩動點M,N分別在邊AB,AC上滑動,且MN∥BC,以MN為邊向下作正方形MPQN,設其邊長為x,正方形MPQN與△ABC公共部分的面積為y(y>0)
(1)△ABC中邊BC上高AD=______;
(2)當x=______時,PQ恰好落在邊BC上(如圖1);
(3)當PQ在△ABC外部時(如圖2),求y關于x的函數(shù)關系式(注明x的取值范圍),并求出x為何值時y最大,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:2004年四川省成都市郫縣中考數(shù)學試卷(課標卷)(解析版) 題型:填空題

(2008•孝感)如果反比例函數(shù)的圖象過點(2,-3),那么k=   

查看答案和解析>>

同步練習冊答案