【題目】在平面直角坐標(biāo)系中,二次函數(shù)的對稱軸為.點在直線上.

(1)求, 的值;

(2)若點在二次函數(shù)上,求的值;

(3)當(dāng)二次函數(shù)與直線相交于兩點時,設(shè)左側(cè)的交點為,若,求的取值范圍.

【答案】答案見解析

【解析】試題分析:(1)由對稱軸公式計算即可,把點A的坐標(biāo)代入直線解析式即可;

2)把點D的坐標(biāo)代入拋物線解析式即可;

3x=-3x=-1分別代入直線的解析式得到兩個點的坐標(biāo),再把這兩個點的坐標(biāo)代入拋物線的解析式即可求出a的取值范圍

試題解析:解:(1x==1,即b=1A-2,m)在直線y=-x+3,當(dāng)x=-2時,m=--2+3=5;

2D32)在y=ax2-2ax+1,當(dāng)x=3時,2=a×32-2×3a+1,解得a=;

3當(dāng)x=-3時,y=-x+3=6當(dāng)(-3,6)在y=ax2-2ax+1上時,6=a-32-2×-3a+1,a=當(dāng)x=-1時,y=-x+3=4當(dāng)(-1,4)在y=ax2-2ax+1上時,4=a-12-2×-a+1,a=1a1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,對稱軸為直線x=1的拋物線y=ax2+bx+8過點(﹣2,0).

(1)求拋物線的表達(dá)式,并寫出其頂點坐標(biāo);

(2)現(xiàn)將此拋物線沿y軸方向平移若干個單位,所得拋物線的頂點為D,與y軸的交點為B,與x軸負(fù)半軸交于點A,過Bx軸的平行線交所得拋物線于點C,若AC∥BD,試求平移后所得拋物線的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角三角形紙片的兩直角邊長分別為6、8,按如圖那樣折疊,使點A與點B重合,折痕為DE,則SBCE:SBDE等于(

A.2:5 B.14:25 C.16:25 D.4:21

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】九年級某班從A、B、C、D四位同學(xué)中選出兩名同學(xué)去參加學(xué)校的羽毛球雙打比賽

1請用樹狀圖法,求恰好選中A、C兩位同學(xué)的概率

2若已確定B被選中,再從其余三位同學(xué)中隨機(jī)選取一位,求恰好選中C同學(xué)的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,李師傅想用長為80米的柵欄,再借助教學(xué)樓的外墻圍成一個矩形的活動區(qū). 已知教學(xué)樓外墻長50米,設(shè)矩形的邊米,面積為平方米.

(1)請寫出活動區(qū)面積之間的關(guān)系式,并指出的取值范圍;

(2)當(dāng)為多少米時,活動區(qū)的面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若正比例函數(shù)的圖象經(jīng)過點,則下列點也在該函數(shù)圖象上的是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某職業(yè)高中機(jī)電班共有學(xué)生42人,其中男生人數(shù)比女生人數(shù)的2倍少3人.

(1)該班男生和女生各有多少人?

(2)某工廠決定到該班招錄30名學(xué)生,經(jīng)測試,該班男、女生每天能加工的零件數(shù)分別為50個和45個,為保證他們每天加工的零件總數(shù)不少于1460個,那么至少要招錄多少名男學(xué)生?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中 過點A作AEDC,垂足為E,連接BE,F(xiàn)為BE上一點,且AFE=D.

(1)求證:ABF∽△BEC;

(2)若AD=5,AB=8,sinD=,求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,有若干個橫坐標(biāo),縱坐標(biāo)均為整數(shù)的點,其順序按圖中“→”方向依次排列:(1,0)(2,0)(2,1)(1,1)(1,2)(2,2)根據(jù)這個規(guī)律,第2020個點的坐標(biāo)為( )

A.45,5B.45,6C.45,7D.45,8

查看答案和解析>>

同步練習(xí)冊答案