【題目】《九章算術(shù)》是我國古代數(shù)學(xué)名著,有題譯文如下:今有門,不知其高寬;有竿,不知其長短.橫放,竿比門寬長出4尺;豎放,竿比門高長出2尺;斜放,竿與門對角線長恰好相等.問門高、寬和對角線的長各是多少?設(shè)門對角線的長為x尺,下列方程符合題意的是(

A.(x2)2(x4)2x2B.(x2)2(x4)2x2

C.x2(x4)2(x4)2D.(x2)2x2(x4)2

【答案】B

【解析】

根據(jù)題意表示出門的寬和高,根據(jù)勾股定理列出方程即可.

設(shè)門對角線的長為x尺,則門的寬為(x4)尺,高為(x2)尺,根據(jù)題意得:

(x2)2(x4)2x2

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不等式2x﹣1>3的最小整數(shù)解是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國家推行“節(jié)能減排,低碳經(jīng)濟(jì)”政策后,某環(huán)保節(jié)能設(shè)備生產(chǎn)企業(yè)的產(chǎn)品供不應(yīng)求.若該企業(yè)的某種環(huán)保設(shè)備每月的產(chǎn)量保持在一定的范圍,每套產(chǎn)品的生產(chǎn)成本不高于50萬元,每套產(chǎn)品的售價(jià)不低于90萬元.已知這種設(shè)備的月產(chǎn)量x(套)與每套的售價(jià)(萬元)之間滿足關(guān)系式,月產(chǎn)量x(套)與生產(chǎn)總成本(萬元)存在如圖所示的函數(shù)關(guān)系.

(1)求月產(chǎn)量x的范圍;

(2)如果想要每月利潤為1750萬元,那么當(dāng)月產(chǎn)量應(yīng)為多少套?

(3)如果每月獲利潤不低于1900萬元,當(dāng)月產(chǎn)量x(套)為多少時(shí),生產(chǎn)總成本最低?并求出此時(shí)的最低成本.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將拋物線y=2x2向右平移3個(gè)單位,再向下平移5個(gè)單位,得到的拋物線的表達(dá)式為(
A.y=2(x﹣3)2﹣5
B.y=2(x+3)2+5
C.y=2(x﹣3)2+5
D.y=2(x+3)2﹣5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2m-43m-1是同一個(gè)數(shù)的平方根,則m的值是(

A. -3B. 1C. -31D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電腦公司銷售部為了定制下個(gè)月的銷售計(jì)劃,對20位銷售員本月的銷售量進(jìn)行了統(tǒng)計(jì)I繪制成如圖所示的統(tǒng)計(jì)圖,則這20位銷售人員本月銷售量的平均數(shù)、中位數(shù)、眾數(shù)分別是( )

A. 19,20,14 B. 18.4,20,20 C. 19, 20, 20 D. 18.4,25,20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一個(gè)二次函數(shù)的圖象開口向上,頂點(diǎn)坐標(biāo)為(2,3),那么這個(gè)二次函數(shù)的解析式可以是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:(﹣23÷4﹣(﹣12018×|3|

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的邊OAy軸的正半軸上,OCx軸的正半軸上,OA=1,OC=2,點(diǎn)D在邊OC上且OD=1.25

1)求直線AC的解析式.

2)在y軸上是否存在點(diǎn)P,直線PD與矩形對角線AC交于點(diǎn)M,使得△DMC為等腰三角形?若存在,直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.

3)拋物線y=-x2經(jīng)過怎樣平移,才能使得平移后的拋物線過點(diǎn)D和點(diǎn)E(點(diǎn)Ey軸正半軸上),且△ODE沿DE折疊后點(diǎn)O落在邊ABO/處?

查看答案和解析>>

同步練習(xí)冊答案