已知a為實數(shù),求代數(shù)式
a+2
-
8-4a
+
-a2
的值.
分析:要先根據(jù)隱含條件判斷出a的值即
-a2
有意義的條件是a=0.
解答:解:∵-a2≥0
∴a2≤0而a2≥0
∴a=0
∴原式=
2
-
8
=-
2
點評:主要考查了二次根式的化簡和計算.此題的解題關鍵是根據(jù)隱含條件判斷出a的值.即
-a2
有意義的條件是a=0.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

精英家教網九年義務教育三年制初級中學教科書代數(shù)第三冊中,有以下幾段文字:“對于坐標平面內任意一點M,都有唯一的一對有序實數(shù)(x,y)和它對應;對于任意一對有序實數(shù)(x,y),在坐標平面內都有唯一的一點M和它對應,也就是說,坐標平面內的點與有序實數(shù)對是一一對應的.”“一般地,對于一個函數(shù),如果把自變量x與函數(shù)y的每對對應值分別作為點的橫坐標與縱坐標,在坐標平面內描出相應的點,這些點所組成的圖形,就是這個函數(shù)的圖象.”“實際上,所有一次函數(shù)的圖象都是一條直線.”“因為兩點確定一條直線,所以畫一次函數(shù)的圖象時,只要先描出兩點,再連成直線,就可以了.”由此可知:滿足函數(shù)關系式的有序實數(shù)對所對應的點,一定在這個函數(shù)的圖象上;反之,函數(shù)圖象上的點的坐標,一定滿足這個函數(shù)的關系式.另外,已知直線上兩點的坐標,便可求出這條直線所對應的一次函數(shù)的解析式.
問題1:已知點A(m,1)在直線y=2x-1上,求m的方法是:
 
,∴m=
 
;已知點B(-2,n)在直線y=2x-1上,求n的方法是:
 
,∴n=
 
;
問題2:已知某個一次函數(shù)的圖象經過點P(3,5)和Q(-4,-9),求這個一次函數(shù)的解析式時,一般先
 
,再由已知條件可得
 
.解得:
 
.∴滿足已知條件的一次函數(shù)的解析式為:
 
.這個一次函數(shù)的圖象與兩坐標軸的交點坐標為:
 
,在右側給定的平面直角坐標系中,描出這兩個點,并畫出這個函數(shù)的圖象.像解決問題2這樣,
 
的方法,叫做待定系數(shù)法.

查看答案和解析>>

科目:初中數(shù)學 來源:1999年河北省中考數(shù)學試卷 題型:解答題

(1999•河北)九年義務教育三年制初級中學教科書代數(shù)第三冊中,有以下幾段文字:“對于坐標平面內任意一點M,都有唯一的一對有序實數(shù)(x,y)和它對應;對于任意一對有序實數(shù)(x,y),在坐標平面內都有唯一的一點M和它對應,也就是說,坐標平面內的點與有序實數(shù)對是一一對應的.”“一般地,對于一個函數(shù),如果把自變量x與函數(shù)y的每對對應值分別作為點的橫坐標與縱坐標,在坐標平面內描出相應的點,這些點所組成的圖形,就是這個函數(shù)的圖象.”“實際上,所有一次函數(shù)的圖象都是一條直線.”“因為兩點確定一條直線,所以畫一次函數(shù)的圖象時,只要先描出兩點,再連成直線,就可以了.”由此可知:滿足函數(shù)關系式的有序實數(shù)對所對應的點,一定在這個函數(shù)的圖象上;反之,函數(shù)圖象上的點的坐標,一定滿足這個函數(shù)的關系式.另外,已知直線上兩點的坐標,便可求出這條直線所對應的一次函數(shù)的解析式.
問題1:已知點A(m,1)在直線y=2x-1上,求m的方法是:    ,∴m=    ;已知點B(-2,n)在直線y=2x-1上,求n的方法是:    ,∴n=   
問題2:已知某個一次函數(shù)的圖象經過點P(3,5)和Q(-4,-9),求這個一次函數(shù)的解析式時,一般先    ,再由已知條件可得    .解得:    .∴滿足已知條件的一次函數(shù)的解析式為:    .這個一次函數(shù)的圖象與兩坐標軸的交點坐標為:    ,在右側給定的平面直角坐標系中,描出這兩個點,并畫出這個函數(shù)的圖象.像解決問題2這樣,    的方法,叫做待定系數(shù)法.

查看答案和解析>>

同步練習冊答案