11.如圖,點(diǎn)A,C,F(xiàn),B在同一直線上,∠ECD=∠DCB,F(xiàn)G∥CD.若∠ECA為α度,則∠GFB為多少度(用關(guān)于α的代數(shù)式表示).

分析 根據(jù)FG∥CD得出∠GFB=∠DCF,再由互補(bǔ)和∠ECD=∠DCB得出∠DCF=$\frac{1}{2}$(180°-α),解答即可.

解答 解:∵點(diǎn)A,C,F(xiàn),B在同一直線上,∠ECA為α,
∴∠ECB=180°-α,
∵CD平分∠ECB,
∴∠DCB=$\frac{1}{2}$(180°-α),
∵FG∥CD,
∴∠GFB=∠DCB=90-$\frac{α}{2}$.

點(diǎn)評(píng) 此題考查平行線的性質(zhì),關(guān)鍵是根據(jù)平行線得出∠GFB=∠DCF和利用角平分線解答.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

1.如圖所示,數(shù)軸上與1,$\sqrt{2}$對(duì)應(yīng)的點(diǎn)分別為A,B,點(diǎn)B關(guān)于點(diǎn)A的對(duì)稱點(diǎn)為點(diǎn)C,設(shè)點(diǎn)C表示的數(shù)為x,求|x-$\sqrt{2}$|+$\frac{2}{x}$的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

2.若x2+x-2=0,則x3+2x2-x+2007=(  )
A.2009B.2008C.-2008D.-2009

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.若a,b互為相反數(shù),c,d互為倒數(shù),m的絕對(duì)值為2,求|$\frac{a+b}{m+1}-{m}^{2}$|-|$\sqrt{2}-cd$|的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.若a=$\sqrt{17}$-1,求(a5+2a4-17a3-a2+18a-17)2003的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.如圖,拋物線y=ax2+bx過點(diǎn)A(4,0),正方形 OABC的邊BC與拋物線的一個(gè)交點(diǎn)為D,點(diǎn)D的橫坐標(biāo)為3,點(diǎn)M在y軸負(fù)半軸上,直線l過點(diǎn)D、M兩點(diǎn)且與拋物線的對(duì)稱軸交于點(diǎn)H,tan∠OMD=$\frac{1}{3}$.
(1)直接寫出點(diǎn)H的坐標(biāo);
(2)求拋物線的解析式;
(3)如果點(diǎn)Q是拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),那么是否存在點(diǎn)Q,使得以點(diǎn)O、M、Q、H為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

12.CD是經(jīng)過∠BCA的頂點(diǎn)C的一條直線,CA=CB,E、F分別是直線CD上兩點(diǎn),且∠BEC=∠CFA=∠α,
(1)若直線CD經(jīng)過∠BCA的內(nèi)部,且E、F在射線C、D上,請(qǐng)解答下面的兩個(gè)問題:
①如圖1,若∠BCA=90°,∠α=90°,則BE=CF,EF=|BE-AF|(填“>”、“<”、“=”);
②如圖2,若0°<∠BCA<180°,請(qǐng)?zhí)砑右粋(gè)關(guān)于∠α與∠BCA關(guān)系的條件∠α+∠BCA=180°,使①中的兩個(gè)結(jié)論仍然成立,并證明兩個(gè)結(jié)論成立.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

9.一條線段AB,繞點(diǎn)A逆時(shí)針連續(xù)旋轉(zhuǎn)9次,恰好旋轉(zhuǎn)了一周回到原來的位置,如果每一次旋轉(zhuǎn)a°或90-a°(其中0<a<90°),那么a有( 。┓N可能的取值.
A.4B.6C.8D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.解方程組:
(1)$\left\{\begin{array}{l}{2x-y=-4}\\{4x-5y=-23}\end{array}\right.$
(2)$\left\{\begin{array}{l}{4(x-y-1)=3(1-y)-2}\\{\frac{x}{2}+\frac{y}{3}=2}\end{array}\right.$.

查看答案和解析>>

同步練習(xí)冊(cè)答案