【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c(a≠0)與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C,點A的坐標為(﹣1,0),且OC=OB,tan∠ACO=

(1)求拋物線的解析式;
(2)若點D和點C關(guān)于拋物線的對稱軸對稱,直線AD下方的拋物線上有一點P,過點P作PH⊥AD于點H,作PM平行于y軸交直線AD于點M,交x軸于點E,求△PHM的周長的最大值;
(3)在(2)的條件下,以點E為端點,在直線EP的右側(cè)作一條射線與拋物線交于點N,使得∠NEP為銳角,在線段EB上是否存在點G,使得以E,N,G為頂點的三角形與△AOC相似?如果存在,請求出點G的坐標;如果不存在,請說明理由.

【答案】
(1)解:∵點A的坐標為(﹣1,0),

∴OA=1.

又∵tan∠ACO= ,

∴OC=4.

∴C(0,﹣4).

∵OC=OB,

∴OB=4

∴B(4,0).

設(shè)拋物線的解析式為y=a(x+1)(x﹣4).

∵將x=0,y=﹣4代入得:﹣4a=﹣4,解得a=1,

∴拋物線的解析式為y=x2﹣3x﹣4


(2)解:∵拋物線的對稱軸為x=﹣ = ,C(0,﹣4),點D和點C關(guān)于拋物線的對稱軸對稱,

∴D(3,﹣4).

設(shè)直線AD的解析式為y=kx+b.

∵將A(﹣1,0)、D(3,﹣4)代入得: ,解得k=﹣1,b=﹣1,

∴直線AD的解析式y(tǒng)=﹣x﹣1.

∵直線AD的一次項系數(shù)k=﹣1,
∴∠BAD=45°.

∵PM平行于y軸,

∴∠AEP=90°.

∴∠PMH=∠AME=45°.

∴△MPH的周長=PM+MH+PH=PM+ MP+ PM=(1+ )PM.

設(shè)P(a,a2﹣3a﹣4),M(﹣a﹣1),則PM=﹣a﹣1﹣(a2﹣3a﹣4)=﹣a2+2a+3,

∵PM=﹣a2+2a+3=﹣(a﹣1)2+4,

∴當a=1時,PM有最大值,最大值為4.

∴△MPH的周長的最大值=4×(1+ )=4+4


(3)解:如圖1所示;當∠EGN=90°.

設(shè)點G的坐標為(a,0),則N(a,a2﹣3a﹣4).

∵∠EGN=∠AOC=90°,

時,△AOC∽△EGN.

= ,整理得:a2+a﹣8=0.

解得:a= (負值已舍去).

∴點G的坐標為( ,0).

如圖2所示:當∠EGN=90°.

設(shè)點G的坐標為(a,0),則N(a,a2﹣3a﹣4).

∵∠EGN=∠AOC=90°,

時,△AOC∽△NGE.

=4,整理得:4a2﹣11a﹣17=0.

解得:a= (負值已舍去).

∴點G的坐標為( ,0).

∵EN在EP的右面,

∴∠NEG<90°.

如圖3所示:當∠ENG′=90°時,

EG′=EG× × =( ﹣1)× =

∴點G′的橫坐標=

≈4.03>4,

∴點G′不在EG上.

故此種情況不成立.

綜上所述,點G的坐標為( ,0)或( ,0)


【解析】(1)先由銳角三角函數(shù)的定義求得C的坐標,從而得到點B的坐標,設(shè)拋物線的解析式為y=a(x+1)(x-4),將點C的坐標代入求解即可;
(2)先求得拋物線的對稱軸,從而得到點D(3,-4),然后利用待定系數(shù)法可求得直線AD的解析式,根據(jù)直線AD的一次項系數(shù)的特點得出∠BAD=45°,進而得出△PMD為等腰直角三角形,所當PM有最大值時三角形的周長最大,設(shè)P(a,a2-3a-4),M(-a-1),則PM=-a2+2a+3,然后利用配方可求得PM的最大值,最后根據(jù)△MPH的周長=()PM,即可以得出答案;
(3)當∠EGN=90°時,設(shè)點G的坐標為(a,0),則N(a,a2-3a-4),則EG=a-1,NG=-a2+3a+4,故OA∶OC=EG∶GN ;如果△AOC∽△EGN,然后根據(jù)題意列方程求解判斷是否適合題意即可 !

【考點精析】根據(jù)題目的已知條件,利用確定一次函數(shù)的表達式和二次函數(shù)的最值的相關(guān)知識可以得到問題的答案,需要掌握確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法;如果自變量的取值范圍是全體實數(shù),那么函數(shù)在頂點處取得最大值(或最小值),即當x=-b/2a時,y最值=(4ac-b2)/4a.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】探究:如圖,在△ABC 中,∠BAC=90°,AB=AC,直線 m 經(jīng)過點 A,BD⊥m 于點 D,CE⊥m 于點 E,求證:△ABD≌△CAE.

應(yīng)用:如圖,在△ABC 中,AB=AC,D、A、E 三點都在直線 m 上,并且有∠BDA=∠AEC=∠BAC,求證:DE=BD+CE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某服裝店用4400元購進A,B兩種新式服裝,按標價售出后可獲得毛利潤2800元(毛利潤=售價﹣進價),這兩種服裝的進價,標價如表所示.

類型價格

A

B

 進價(元/件)

60

100

 標價(元/件)

100

160

(1)請利用二元一次方程組求這兩種服裝各購進的件數(shù);

(2)如果A種服裝按標價的9折出售,B種服裝按標價的8折出售,那么這批服裝全部售完后,服裝店比按標價出售少收入多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,頂點為M的拋物線y=ax2+bx(a>0)經(jīng)過點A和x軸正半軸上的點B,AO=BO=2,∠AOB=120°.

(1)求a,b的值;
(2)連結(jié)OM,求∠AOM的大。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在△ABC中,AB=AC,AE是角平分線,BM平分∠ABC交AE于點M,經(jīng)過B,M兩點的⊙O交BC于點G,交AB于點F,F(xiàn)B恰為⊙O的直徑.

(1)求證:AE與⊙O相切;
(2)當BC=4,AC=6,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的三個頂點的坐標分別是A(2,2),B(1,0),C(3,1).

(1)畫出△ABC關(guān)于x軸對稱的△ABC′,并求出點A′、B′、C′的坐標

(2)在坐標平面內(nèi)是否存在點D,使得△COD為等腰三角形?若存在,直接寫出點D的坐標找出滿足條件的兩個點即可);若不存在請說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,ABAC,∠BAC50° ,DBC的中點,以AC為腰向外作等腰直角ACE,∠EAC90°,連接BE,交AD于點F,交AC于點G

(1)求AEB的度數(shù);

(2)求證:AEBACF

(3)AB4,求的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點O0,0),B23),點A在坐標軸上,且SAOB6

1)求滿足條件的點A的坐標;

2)點C(﹣3,1),過O點直線l把三角形BOC分成面積相等的兩部分,交BCD,則D的坐標為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD,∠B=90°,AB∥ED ,BCE,交 ACF, DE = BC,.

(1) 求證:△FCD 是等腰三角形

(2) AB=3.5cm,CD的長。

查看答案和解析>>

同步練習冊答案