求證(n+7)2-(n-5)2能被24整除.

答案:
解析:

  證明:(n+7)2-(n-5)2

 。絒(n+7)+(n-5)][(n+7)-(n-5)]

 。(2n+2)×12

 。24(n+1).

  因?yàn)?4(n+1)能被24整除,

  所以(n+7)2-(n-5)2能被24整除.

  思路點(diǎn)撥:本題可利用平方差公式看結(jié)果是否是24的整數(shù)倍數(shù)即可.

  評(píng)注:在有些題目中,平方差公式的運(yùn)用會(huì)使整個(gè)題目簡(jiǎn)化,要多加注意運(yùn)用.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,Rt△ABC內(nèi)接于⊙O,AC=BC,∠BAC的平分線AD與⊙O交于點(diǎn)D,與BC交于點(diǎn)E,延長(zhǎng)BD,與AC的延長(zhǎng)線交于點(diǎn)F,連接CD,G是CD的中點(diǎn),連接OG.
(1)判斷OG與CD的位置關(guān)系,寫(xiě)出你的結(jié)論并證明;
(2)求證:AE=BF;
(3)若OG?DE=3(2-
2
),求⊙O的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、如圖,BD是?ABCD的對(duì)角線,AE⊥BD于E,CF⊥BD于F,求證:四邊形AECF為平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、在平行四邊形ABCD中,BC=CE,AC=CF,AF、DE交于點(diǎn)G,B、C、E、F在一直線上.
求證:△ADG是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、已知,如圖,C為線段AB的中點(diǎn),CD平分∠ACE,CE平分∠BCD,且CD=CE,求證:AD=BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn),連接AC,過(guò)點(diǎn)C作直線CD⊥AB于D(AD<DB),點(diǎn)E是精英家教網(wǎng)DB上任意一點(diǎn)(點(diǎn)D、B除外),直線CE交⊙O于點(diǎn)F,連接AF與直線CD交于點(diǎn)G.
(1)求證:AC2=AG•AF;
(2)若點(diǎn)E是AD(點(diǎn)A除外)上任意一點(diǎn),上述結(jié)論是否仍然成立?若成立,請(qǐng)畫(huà)出圖形并給予證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案