【題目】在平面直角坐標(biāo)系中,規(guī)定把一個(gè)三角形先沿著x軸翻折,再向右平移2個(gè)單位稱(chēng)為1次變換.如圖,已知等邊三角形ABC的頂點(diǎn)B、C的坐標(biāo)分別是(﹣1,﹣1)、(﹣3,﹣1),把△ABC經(jīng)過(guò)連續(xù)9次這樣的變換得到△A′B′C′,則點(diǎn)A的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)是 .
【答案】(16,1+ )
【解析】解:∵△ABC是等邊三角形,點(diǎn)B、C的坐標(biāo)分別是(﹣1,﹣1)、(﹣3,﹣1), ∴點(diǎn)A的坐標(biāo)為(﹣2,﹣1﹣ ),
根據(jù)題意得:第1次變換后的點(diǎn)A的對(duì)應(yīng)點(diǎn)的坐標(biāo)為(﹣2+2,1+ ),即(0,1+ ),
第2次變換后的點(diǎn)A的對(duì)應(yīng)點(diǎn)的坐標(biāo)為(0+2,﹣1﹣ ),即(2,﹣1﹣ ),
第3次變換后的點(diǎn)A的對(duì)應(yīng)點(diǎn)的坐標(biāo)為(2+2,1+ ),即(4,1+ ),
第n次變換后的點(diǎn)A的對(duì)應(yīng)點(diǎn)的為:當(dāng)n為奇數(shù)時(shí)為(2n﹣2,1+ ),當(dāng)n為偶數(shù)時(shí)為(2n﹣2,﹣1﹣ ),
∴把△ABC經(jīng)過(guò)連續(xù)9次這樣的變換得到△A′B′C′,則點(diǎn)A的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)是:(16,1+ ).
故答案為:(16,1+ ).
首先由△ABC是等邊三角形,點(diǎn)B、C的坐標(biāo)分別是(﹣1,﹣1)、(﹣3,﹣1),求得點(diǎn)A的坐標(biāo),然后根據(jù)題意求得第1次、2次、3次變換后的點(diǎn)A的對(duì)應(yīng)點(diǎn)的坐標(biāo),即可得規(guī)律:第n次變換后的點(diǎn)A的對(duì)應(yīng)點(diǎn)的為:當(dāng)n為奇數(shù)時(shí)為(2n﹣2,1+ ),當(dāng)n為偶數(shù)時(shí)為(2n﹣2,﹣1﹣ ),繼而求得把△ABC經(jīng)過(guò)連續(xù)9次這樣的變換得到△A′B′C′,則點(diǎn)A的對(duì)應(yīng)點(diǎn)A′的坐標(biāo).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,A、B、C、D為矩形的四個(gè)頂點(diǎn),AD=4cm,AB=dcm.動(dòng)點(diǎn)E、F分別從點(diǎn)D、B出發(fā),點(diǎn)E以1cm/s的速度沿邊DA向點(diǎn)A移動(dòng),點(diǎn)F以1cm/s的速度沿邊BC向點(diǎn)C移動(dòng),點(diǎn)F移動(dòng)到點(diǎn)C時(shí),兩點(diǎn)同時(shí)停止移動(dòng).以EF為邊作正方形EFGH,點(diǎn)F出發(fā)xs時(shí),正方形EFGH的面積為ycm2 . 已知y與x的函數(shù)圖象是拋物線(xiàn)的一部分,如圖2所示.請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:
(1)自變量x的取值范圍是;
(2)d= , m= , n=;
(3)F出發(fā)多少秒時(shí),正方形EFGH的面積為16cm2?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在梯形ABCD中,AD∥BC,∠A=60°,動(dòng)點(diǎn)P從A點(diǎn)出發(fā),以1cm/s的速度沿著A→B→C→D的方向不停移動(dòng),直到點(diǎn)P到達(dá)點(diǎn)D后才停止.已知△PAD的面積S(單位:cm2)與點(diǎn)P移動(dòng)的時(shí)間(單位:s)的函數(shù)如圖②所示,則點(diǎn)P從開(kāi)始移動(dòng)到停止移動(dòng)一共用了秒(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解學(xué)生參加家務(wù)勞動(dòng)的情況,某中學(xué)隨機(jī)抽取部分學(xué)生,統(tǒng)計(jì)他們雙休日兩天家務(wù)勞動(dòng)的時(shí)間,將統(tǒng)計(jì)的勞動(dòng)時(shí)間(單位:分鐘)分成5組:30≤x<60,60≤x<90,90≤x<120,120≤x<150,150≤x<180,繪制成頻數(shù)分布直方圖.請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)這次抽樣調(diào)查的樣本容量是;
(2)根據(jù)小組60≤x<90的組中值75,估計(jì)該組中所有數(shù)據(jù)的和為;
(3)該中學(xué)共有1000名學(xué)生,估計(jì)雙休日兩天有多少名學(xué)生家務(wù)勞動(dòng)的時(shí)間不小于90分鐘?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖△ABC中,AB=AC=10厘米,BC=12厘米,D是BC的中點(diǎn),點(diǎn)P從B出發(fā),以a厘米/秒(a>0)的速度沿BA勻速向點(diǎn)A運(yùn)動(dòng),點(diǎn)Q同時(shí)以1厘米/秒的速度從D出發(fā),沿DB勻速向點(diǎn)B運(yùn)動(dòng),其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)它們運(yùn)動(dòng)的時(shí)間為t秒.
(1)若a=2,△BPQ∽△BDA,求t的值;
(2)設(shè)點(diǎn)M在AC上,四邊形PQCM為平行四邊形. ①若a= ,求PQ的長(zhǎng);
②是否存在實(shí)數(shù)a,使得點(diǎn)P在∠ACB的平分線(xiàn)上?若存在,請(qǐng)求出a的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】看圖說(shuō)故事. 請(qǐng)你編寫(xiě)一個(gè)故事,使故事情境中出現(xiàn)的一對(duì)變量x、y滿(mǎn)足圖示的函數(shù)關(guān)系,要求:
(1)指出變量x和y的含義;
(2)利用圖中的數(shù)據(jù)說(shuō)明這對(duì)變量變化過(guò)程的實(shí)際意義,其中須涉及“速度”這個(gè)量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)家和地方政府為了提高農(nóng)民種糧的積極性,每畝地每年發(fā)放種糧補(bǔ)貼120元.種糧大戶(hù)老王今年種了150畝地,計(jì)劃明年再承租50~150畝土地種糧以增加收入,考慮各種因素,預(yù)計(jì)明年每畝種糧成本y(元)與種糧面積x(畝)之間的函數(shù)關(guān)系如圖所示:
(1)今年老王種糧可獲得補(bǔ)貼多少元?
(2)根據(jù)圖象,求y與x之間的函數(shù)關(guān)系式;
(3)若明年每畝的售糧收入能達(dá)到2140元,求老王明年種糧總收入W(元)與種糧面積x(畝)之間的函數(shù)關(guān)系式.當(dāng)種糧面積為多少畝時(shí),總收入最高?并求出最高總收入.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)將進(jìn)價(jià)為2000元的冰箱以2400元售出,平均每天能售出8臺(tái),為了配合國(guó)家“家電下鄉(xiāng)”政策的實(shí)施,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施.調(diào)查表明:這種冰箱的售價(jià)每降低50元,平均每天就能多售出4臺(tái).
(1)假設(shè)每臺(tái)冰箱降價(jià)x元,商場(chǎng)每天銷(xiāo)售這種冰箱的利潤(rùn)是y元,請(qǐng)寫(xiě)出y與x之間的函數(shù)表達(dá)式;(不要求寫(xiě)自變量的取值范圍)
(2)商場(chǎng)要想在這種冰箱銷(xiāo)售中每天盈利4800元,同時(shí)又要使百姓得到實(shí)惠,每臺(tái)冰箱應(yīng)降價(jià)多少元?
(3)每臺(tái)冰箱降價(jià)多少元時(shí),商場(chǎng)每天銷(xiāo)售這種冰箱的利潤(rùn)最高?最高利潤(rùn)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com