(2010•鞍山)如圖,設(shè)M、N分別是直角梯形ABCD兩腰AD、CB的中點(diǎn),DE上AB于點(diǎn)E,將△ADE沿DE翻折,M與N恰好重合,則AE:BE等于( )

A.2:1
B.1:2
C.3:2
D.2:3
【答案】分析:先設(shè)DE與MN交于點(diǎn)F,由于MN是AD、BC的中點(diǎn),所以根據(jù)梯形中位線定理,可知MN∥AB,在△ADE中,MF∥AE,M是AD中點(diǎn),根據(jù)平行線分線段成比例定理,可知F也是DE中點(diǎn),利用三角形中位線定理,可知AE=2MF,又由于△ADE沿DE翻折,MN重合,可知MF=NF,在根據(jù)四邊形FEBN是矩形,可知NF=BE,那么就可求出AE:BE的值.
解答:解:設(shè)DE與MN交于點(diǎn)F,
∵M(jìn)、N分別是AD、CB上的中點(diǎn),
∴MN∥AB,
又∵M(jìn)是AD的中點(diǎn),
∴MF=AE,
又∵M(jìn)、N重合,
∴NF=BE,MF=NF,
∴AE:BE=2MF:NF=2:1,
故選A.
點(diǎn)評(píng):考查綜合運(yùn)用梯形、三角形中位線定理及矩形、平行線分線段成比例定理等相關(guān)知識(shí)解決問題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2006年全國(guó)中考數(shù)學(xué)試題匯編《反比例函數(shù)》(04)(解析版) 題型:填空題

(2010•鞍山)如圖,矩形AOCB的兩邊OC、OA分別位x軸、y軸上,點(diǎn)B的坐標(biāo)為B(,5),D是AB邊上的一點(diǎn).將△ADO沿直線OD翻折,使A點(diǎn)恰好落在對(duì)角線OB上的點(diǎn)E處,若點(diǎn)E在一反比例函數(shù)的圖象上,那么該函數(shù)的解析式是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年全國(guó)中考數(shù)學(xué)試題匯編《反比例函數(shù)》(03)(解析版) 題型:選擇題

(2010•鞍山)如圖△OAP,△ABQ均是等腰直角三角形,點(diǎn)P,Q在函數(shù)y=(x>0)的圖象上,直角頂點(diǎn)A,B均在x軸上,則點(diǎn)B的坐標(biāo)為( )

A.(,0)
B.(,0)
C.(3,0)
D.(,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年天津市中考數(shù)學(xué)模擬試卷(二)(解析版) 題型:填空題

(2010•鞍山)如圖,矩形AOCB的兩邊OC、OA分別位x軸、y軸上,點(diǎn)B的坐標(biāo)為B(,5),D是AB邊上的一點(diǎn).將△ADO沿直線OD翻折,使A點(diǎn)恰好落在對(duì)角線OB上的點(diǎn)E處,若點(diǎn)E在一反比例函數(shù)的圖象上,那么該函數(shù)的解析式是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年遼寧省鞍山市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2010•鞍山)如圖△OAP,△ABQ均是等腰直角三角形,點(diǎn)P,Q在函數(shù)y=(x>0)的圖象上,直角頂點(diǎn)A,B均在x軸上,則點(diǎn)B的坐標(biāo)為( )

A.(,0)
B.(,0)
C.(3,0)
D.(,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年四川省樂山市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:選擇題

(2010•鞍山)如圖△OAP,△ABQ均是等腰直角三角形,點(diǎn)P,Q在函數(shù)y=(x>0)的圖象上,直角頂點(diǎn)A,B均在x軸上,則點(diǎn)B的坐標(biāo)為( )

A.(,0)
B.(,0)
C.(3,0)
D.(,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案