【題目】某飲料廠以300千克的A種果汁和240千克的B種果汁為原料,配制生產甲、乙兩種新型飲料,已知每千克甲種飲料含0.6千克A種果汁,含0.3千克B種果汁;每千克乙種飲料含0.2千克A種果汁,含0.4千克B種果汁.飲料廠計劃生產甲、乙兩種新型飲料共650千克,設該廠生產甲種飲料x(千克).
(1)列出滿足題意的關于x的不等式組,并求出x的取值范圍;
(2)已知該飲料廠的甲種飲料銷售價是每1千克3元,乙種飲料銷售價是每1千克4元,那么該飲料廠生產甲、乙兩種飲料各多少千克,才能使得這批飲料銷售總金額最大?
【答案】解:(1)設該廠生產甲種飲料x千克,則生產乙種飲料(650﹣x)千克,
根據(jù)題意得,,
由①得,x≤425,由②得,x≥200,
∴x的取值范圍是200≤x≤425。
(2)設這批飲料銷售總金額為y元,根據(jù)題意得,
,即y=﹣x+2600,
∵k=﹣1<0,
∴當x=200時,這批飲料銷售總金額最大,為﹣200+2600=2400元。
【解析】
試題分析:(1)表示出生產乙種飲料(650﹣x)千克,然后根據(jù)所需A種果汁和B種果汁的數(shù)量列出一元一次不等式組,求解即可得到x的取值范圍。
(2)根據(jù)銷售總金額等于兩種飲料的銷售額的和列式整理,再根據(jù)一次函數(shù)的增減性求出最大銷售額。
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC,AD平分∠BAC交BC于點D,BC的中點為M,ME∥AD,交BA的延長線于點E,交AC于點F.
(1)求證:AE=AF;
(2)求證:BE=(AB+AC).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】課外閱讀是提高學生素養(yǎng)的重要途徑,亞光初中為了了解學校學生的閱讀情況,組織調查組對全校三個年級共1500名學生進行了抽樣調查,抽取的樣本容量為300.已知該校有初一學生600名,初二學生500名,初三學生400名.
(1)為使調查的結果更加準確地反映全校的總體情況,應分別在初一年級隨機抽取人;在初二年級隨機抽取人;在初三年級隨機抽取人.(請直接填空)
(2)調查組對本校學生課外閱讀量的統(tǒng)計結果分別用扇形統(tǒng)計圖和頻數(shù)分布直方圖表示如下請根據(jù)上統(tǒng)計圖,計算樣本中各類閱讀量的人數(shù),并補全頻數(shù)分布直方圖.
(3)根據(jù)(2)的調查結果,從該校中隨機抽取一名學生,他最大可能的閱讀量是多少本?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果把一個自然數(shù)各數(shù)位上的數(shù)字從最高位到個位依次排出的一串數(shù)字,與從個位到最高位依次排出的一串數(shù)字完全相同,那么我們把這樣的自然數(shù)稱為“和諧數(shù)”.例如:自然數(shù)12321,從最高位到個位排出的一串數(shù)字是:1,2,3,2,1,從個位到最高排出的一串數(shù)字仍是:1,2,3,2,1,因此12321是一個“和諧數(shù)”.再如:22,545,3883,34543,…,都是“和諧數(shù)”.
(1)請你直接寫出3個四位“和諧數(shù)”;請你猜想任意一個四位“和諧數(shù)”能否被11整除,并說明理由;
(2)已知一個能被11整除的三位“和諧數(shù)”,設其個位上的數(shù)字為x(,x為自然數(shù)),十位上的數(shù)字為y,求y與x的函數(shù)關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“城市發(fā)展 交通先行”,成都市今年在中心城區(qū)啟動了緩堵保暢的二環(huán)路高架橋快速通道建設工程,建成后將大大提升二環(huán)路的通行能力.研究表明,某種情況下,高架橋上的車流速度V(單位:千米/時)是車流密度x(單位:輛/千米)的函數(shù),且當0<x≤28時,V=80;當28<x≤188時,V是x的一次函數(shù).函數(shù)關系如圖所示.
(1)求當28<x≤188時,V關于x的函數(shù)表達式;
(2)若車流速度V不低于50千米/時,求當車流密度x為多少時,車流量P(單位:輛/時)達到最大,并求出這一最大值. (注:車流量是單位時間內通過觀測點的車輛數(shù),計算公式為:車流量=車流速度×車流密度)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com