如圖,正方形ABCD的邊長為6,點(diǎn)O是對角線AC、BD的交點(diǎn),點(diǎn)E在CD上,且DE=2CE,過點(diǎn)C作CF⊥BE,垂足為F,連接OF,則OF的長為__________.
.
【考點(diǎn)】全等三角形的判定與性質(zhì);等腰直角三角形;正方形的性質(zhì).
【專題】計(jì)算題;幾何圖形問題.
【分析】在BE上截取BG=CF,連接OG,證明△OBG≌△OCF,則OG=OF,∠BOG=∠COF,得出等腰直角三角形GOF,在RT△BCE中,根據(jù)射影定理求得GF的長,即可求得OF的長.
【解答】解:如圖,在BE上截取BG=CF,連接OG,
∵RT△BCE中,CF⊥BE,
∴∠EBC=∠ECF,
∵∠OBC=∠OCD=45°,
∴∠OBG=∠OCF,
在△OBG與△OCF中
∴△OBG≌△OCF(SAS)
∴OG=OF,∠BOG=∠COF,
∴OG⊥OF,
在RT△BCE中,BC=DC=6,DE=2EC,
∴EC=2,
∴BE===2,
∵BC2=BF•BE,
則62=BF,解得:BF=,
∴EF=BE﹣BF=,
∵CF2=BF•EF,
∴CF=,
∴GF=BF﹣BG=BF﹣CF=,
在等腰直角△OGF中
OF2=GF2,
∴OF=.
故答案為:.
【點(diǎn)評】本題考查了全等三角形的判定和性質(zhì),直角三角形的判定以及射影定理、勾股定理的應(yīng)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中,Rt△OAB的頂點(diǎn)A在x軸的正半軸上.頂點(diǎn)B的坐標(biāo)為,點(diǎn)C的坐標(biāo)為,點(diǎn)P為斜邊OB上的一個動點(diǎn),則PA+PC的最小值為…( 。
A.;B.; C.;D.;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,△ABC中,P為AB上的一點(diǎn),在下列四個條件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能滿足△APC和△ACB相似的條件是( )
A.①②④ B.①③④ C.②③④ D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在一個不透明的口袋里裝有標(biāo)號為1,2,3,4,5的五個小球,除數(shù)字不同外,小球沒有任何區(qū)別,摸球前先攪拌均勻,每次摸一個球.
(1)下列說法:
①摸一次,摸出1號球和摸出5號球的概率相同;
②有放回的連續(xù)摸10次,則一定摸出2號球兩次;
③有放回的連續(xù)摸4次,則摸出四個球標(biāo)號數(shù)字之和可能是20.
其中正確的序號是__________.
(2)若從袋中不放回地摸兩次,求兩球標(biāo)號數(shù)字是一奇一偶的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com