【題目】列方程解應(yīng)用題:水果店第一次用500元購進(jìn)某種水果,由于銷售狀況良好,該店又用1650元購進(jìn)該品種水果,所購數(shù)量比第一次增加200千克,但進(jìn)貨價(jià)每千克上漲了10%

1)第一次所購水果的進(jìn)貨價(jià)是每千克多少元?

2)水果店以相同價(jià)格銷售這些水果,若該水果店售完這些水果獲利不低于1450元,則該種水果的售價(jià)至少應(yīng)為多少元?

【答案】15;(29;

【解析】

1)設(shè)第一次所購水果的進(jìn)貨價(jià)是每千克多少元,由題意可列方程求解.

2)求出兩次的購進(jìn)千克數(shù),根據(jù)利潤=售價(jià)-進(jìn)價(jià),可求出結(jié)果.

(1)設(shè)第一次購水果x千克,則第二次購進(jìn)水果(x+200)千克。

根據(jù)題意,

解得:x=100.

經(jīng)檢驗(yàn)x=100是原方程的根.

500÷100=5(/千克)

答:第一次所購水果的進(jìn)貨價(jià)是每千克5元;

(2)設(shè)這兩批水果的銷售價(jià)格為y/千克.

(100+200+100)y(500+1650)1450.

解得y9.

答:這兩批水果的售價(jià)至少應(yīng)為9/千克.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由幾個(gè)相同的邊長為1的小立方塊搭成的幾何體的俯視圖如下圖,格中的數(shù)字表示該位置的小立方塊的個(gè)數(shù).

(1)請?jiān)谙旅娣礁窦堉蟹謩e畫出這個(gè)向何體的主視圖和左視圖.

(2)根據(jù)三視圖;這個(gè)組合幾何體的表面積為 _________ 個(gè)平方單位.(包括底面積)

(3)若上述小立方塊搭成的幾何體的俯視圖不變,各位置的小立方塊個(gè)數(shù)可以改變(總數(shù)目不變),則搭成這樣的組合幾何體中的表面積最大是為 _________ 個(gè)平方單位.(包括底面積)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知兩直線L1y=k1x+b1,L2y=k2x+b2,若L1L2,則有k1k2=﹣1

1)應(yīng)用:已知y=2x+1y=kx﹣1垂直,求k;

2)直線經(jīng)過A2,3),且與y=x+3垂直,求解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)中,已知四邊形ABCD是正方形,點(diǎn)A在原點(diǎn),點(diǎn)B的坐標(biāo)是(3,1),則點(diǎn)D的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC和△ADE中,AB=AC,AD=AE,且∠BAC=DAE,點(diǎn)EBC上.過點(diǎn)DDFBC,連接DB.

求證:(1)ABD≌△ACE;

(2)DF=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+2x+8x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,且B(4,0).

(1)求拋物線的解析式及其頂點(diǎn)D的坐標(biāo);

(2)如果點(diǎn)P(p,0)是x軸上的一個(gè)動(dòng)點(diǎn),則當(dāng)|PC﹣PD|取得最大值時(shí),求p的值;

(3)能否在拋物線第一象限的圖象上找到一點(diǎn)Q,使△QBC的面積最大,若能,請求出點(diǎn)Q的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在邊長為1個(gè)單位長度的正方形網(wǎng)格中建立如圖所示的平面直角坐標(biāo)系,ABC的頂點(diǎn)都在格點(diǎn)上,請解答下列問題

1)畫出將ABC向左平移4個(gè)單位長度后得到的圖形A1B1C1,并寫出點(diǎn)C1的坐標(biāo);

2)畫出將ABC關(guān)于原點(diǎn)O對稱的圖形A2B2C2,并寫出點(diǎn)C2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形AOBC和四邊形CDEF都是正方形,邊OAx軸上,邊OBy軸上,點(diǎn)D在邊CB上,反比例函數(shù)k0)在第一象限的圖象經(jīng)過點(diǎn)E,若正方形AOBC和正方形CDEF的面積之差為6,則k_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知BC是⊙O的直徑,AC切⊙O于點(diǎn)C,AB交⊙O于點(diǎn)D,E為AC的中點(diǎn),連接CD,DE.

(1)求證:DE是⊙O的切線;

(2)若BD=4,CD=3,求AC的長.

查看答案和解析>>

同步練習(xí)冊答案