【題目】(1)如圖,平移三角形ABC,使點A平移到點,畫出平移后的三角形;

(2)(1)的條件下,指出點A,B,C 的對應點,并指出AB,BC,AC的對應線段和∠A,∠B, C的對應角.

【答案】(1)見解析;(2A,B,C的對應點分別是點A',B',C',線段AB,BC,AC的對應線段分別是A'B',B'C',A'C',∠A,∠B,∠ACB的對應角分別∠A',∠A'B'C',∠A'C'B'

【解析】

根據(jù)平移的性質(zhì)分別得出對應點以及對應線段和對應角即可

(1)如圖所示.

(2)A,B,C的對應點分別是點A',B',C',線段ABBC,AC的對應線段分別是A'B',B'C',A'C',∠A,∠B,∠ACB的對應角分別A',∠A'B'C',∠A'C'B'.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x,y的方程(n-2)x2m+3+3y5|n|-9=4.

(1)若方程是二元一次方程,求m2+n2的值;

(2)若方程是一元一次方程,求m,n的值或取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平面直角坐標系中,拋物線y=ax2+bx+2過點A(﹣3,0)、B (1,0),與y軸交于點C,拋物線的頂點為D,點G在拋物線上且其縱坐標為2.
(1)a= , b= , D( , ).
(2)P是線段AB上一動點(點P不與A、B重合),點P作x軸的垂線交拋物線于點E.
①若PE=PB,試求E點坐標;
②在①的條件下,PE、DG交于點M,在線段PE上是否存一點N,使得△DMN與△DCO相似?若存在,試求出相應點的坐標;
③在①的條件下,點F是坐標軸上一點,且點F到EC、ED的距離相等,試直接寫出EF的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下表列出了國外幾個城市與首都北京的時差(帶正號的表示同一時刻比北京時間早的時數(shù)),如北京時間的上午1000東京時間的10點已過去了1小時,現(xiàn)在已是10+1=1100

1)如果現(xiàn)在是北京時間800,那么現(xiàn)在的紐約時間是多少

2)此時(北京時間800小明想給遠在巴黎姑媽打電話,你認為合適嗎?為什么?

3)如果現(xiàn)在是芝加哥時間上午600,那么現(xiàn)在北京時間是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】實驗證明,平面鏡反射光線的規(guī)律是:射到平面鏡上的光線和被反射出的光線與平面鏡所夾的銳角相等.

(1)如圖,一束光線射到平面鏡上,被反射到平面鏡上,又被反射,若被反射出的光線與光線平行,且,則_________,________.

(2)在(1)中,若,則_______;若,則________;

(3)由(1)、(2),請你猜想:當兩平面鏡、的夾角________時,可以使任何射到平面鏡上的光線,經(jīng)過平面鏡的兩次反射后,入射光線與反射光線平行.請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,隧道的截面由半圓和長方形構(gòu)成,長方形的長BC為8m,寬AB為1m,該隧道內(nèi)設(shè)雙向行駛的車道(共有2條車道),若現(xiàn)有一輛貨運卡車高4m,寬2.3m。則這輛貨運卡車能否通過該隧道?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線ABDF,D+B=180°,

1)求證:DEBC;

2)如果∠AMD=75°,求∠AGC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將一個直角三角板中30°的銳角頂點與另一個直角三角板的直角頂點疊放一起.(:∠ACB∠DEC是直角,∠A=45°,∠DEC=30°).

(1)如圖①,若點C、B、D在一條直線上,求∠ACE的度數(shù);

(2)如圖②,將直角三角板CDE繞點c逆時針方向轉(zhuǎn)動到某個位置,若恰好平分∠DCE,求∠BCD的度數(shù);

(3)如圖∠DEC始終在∠ACB的內(nèi)部,分別作射線CM平分∠BCD,射線CN平分∠ACE.如果三角板DCE∠ACB內(nèi)繞點C任意轉(zhuǎn)動,∠MCN的度數(shù)是否發(fā)生變化?如果不變,求出它的度數(shù),如果變化,說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分別為D,E.

(1)求證:△ACD≌△CBE;

(2)若AD=12,DE=7,求BE的長.

查看答案和解析>>

同步練習冊答案