分析 (1)過點(diǎn)A作AD⊥x軸,垂足為D,根據(jù)A、C兩點(diǎn)的坐標(biāo)可求出AD和DC,根據(jù)勾股定理可求出AC2,即可求出等腰直角△ABC的面積;
(2)要求直線AB與y軸的交點(diǎn)坐標(biāo),只需求出直線AB的解析式,只需求出點(diǎn)B的坐標(biāo),過點(diǎn)B作BE⊥x軸,垂足為E,易證△ADC≌△CEB,即可得到BE和CE,
從而得到點(diǎn)B的坐標(biāo),問題得以解決.
解答 解:(1)過點(diǎn)A作AD⊥x軸,垂足為D.
∵C(1,0),A(-2,1),
∴AD=1,DC=1-(-2)=3,
∴AC2=AD2+DC2=10,
∴S△ABC=$\frac{1}{2}$AC2=5;
(2)過點(diǎn)B作BE⊥x軸,垂足為E,
∴∠ADC=∠CEB=90°,
∴∠CAD+∠ACD=90°,
∵∠ACB=90°,
∴∠BCE+∠ACD=90°,
∴∠CAD=∠BCE.
在△ADC和△CEB中,
$\left\{\begin{array}{l}{∠ADC=∠CEB=90°}\\{∠CAD=∠BCE}\\{AC=BC}\end{array}\right.$,
∴△ADC≌△CEB,
∴CD=BE=3,CE=AD=1,
∴OE=2,
∴點(diǎn)B的坐標(biāo)為(2,3).
設(shè)直線AB的解析式為y=kx+b,則
$\left\{\begin{array}{l}{2k+b=3}\\{-2k+b=1}\end{array}\right.$,
解得$\left\{\begin{array}{l}{k=\frac{1}{2}}\\{b=2}\end{array}\right.$,
∴y=$\frac{1}{2}$x+2.
當(dāng)x=0時,y=2,
∴直線AB交y軸于點(diǎn)(0,2).
點(diǎn)評 本題主要考查了全等三角形的判定與性質(zhì)、用待定系數(shù)法求一次函數(shù)的表達(dá)式、直線上點(diǎn)的坐標(biāo)特征、等腰直角三角形面積公式等知識,構(gòu)造K型全等是解決第(2)小題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 3:2 | B. | 2:3 | C. | 3:4 | D. | 4:3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 了解揚(yáng)州人民對建設(shè)高鐵的意見 | B. | 了解本班同學(xué)的課外閱讀情況 | ||
C. | 了解同批次LED燈泡的使用壽命 | D. | 了解揚(yáng)州市八年級學(xué)生的視力情況 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 2(x-1)=24-1-2x | B. | 2(x-1)=24-1+2x | C. | 2(x-1)=3-1-2x | D. | 2(x-1)=3-1+2x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com