A. | 25° | B. | 30° | C. | 35° | D. | 40° |
分析 首先設(shè)∠ACE=x°,∠DCE=y°,∠BCD=z°,由BE=BC,AD=AC,利用等腰三角形的性質(zhì),即可用x,y,z表示出∠ADC與∠BEC的度數(shù),又由三角形外角的性質(zhì),得到∠A與∠B的值,然后由在△ABC中,∠ACB=100°,利用三角形內(nèi)角和定理得到方程,繼而求得∠DCE的大。
解答 解:設(shè)∠ACE=x°,∠DCE=y°,∠BCD=z°,
∵BE=BC,AD=AC,
∴∠ADC=∠ACD=∠ACE+∠DCE=(x+y)°,∠BEC=∠BCE=∠BCD+∠DCE=(y+z)°,
∴∠A=∠BEC-∠ACE=(y+z-x)°,∠B=∠ADC-∠BCD=(x+y-z)°,
∵在△ABC中,∠ACB=100°,
∴∠A+∠B=180°-∠ACB=80°,
∴y+z-x+x+y-z=80,
即2y=80,
∴y=40,
∴∠DCE=40°.
故選D.
點(diǎn)評(píng) 本題考查了等腰三角形的性質(zhì)、三角形內(nèi)角和定理以及三角形外角的性質(zhì).此題難度適中,解答此題的關(guān)鍵是建立起各角之間的關(guān)系,結(jié)合圖形列出方程進(jìn)行解答.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6 | B. | 8 | C. | 10 | D. | 14 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com