(2004•烏魯木齊)如圖,AD∥BC,∠D=90°,DC=7,AD=2,BC=4.若在邊DC上有點P使△PAD和△PBC相似,則這樣的點P存在的個數(shù)有( )

A.1
B.2
C.3
D.4
【答案】分析:根據(jù)已知分兩種情況△PAD∽△PBC或△PAD∽△CBP來進(jìn)行分析,求得PD的長,從而確定P存在的個數(shù).
解答:解:∵AD∥BC,∠D=90°
∴∠C=∠D=90°
∵DC=7,AD=2,BC=4
設(shè)PD=x,則PC=7-x;
①若PD:PC=AD:BC,則△PAD∽△PBC
,解得:PD=
②若PD:BC=AD:PC,則△PAD∽△CBP
,解得:PD=
∴這樣的點P存在的個數(shù)有3個.
故選C.
點評:此題考查了相似三角形的判定:
①如果兩個三角形的三組對應(yīng)邊的比相等,那么這兩個三角形相似;
②如果兩個三角形的兩條對應(yīng)邊的比相等,且夾角相等,那么這兩個三角形相似;
③如果兩個三角形的兩個對應(yīng)角相等,那么這兩個三角形相似.平行于三角形一邊的直線截另兩邊或另兩邊的延長線所組成的三角形與原三角形相似.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年湖北省武漢六中中考數(shù)學(xué)模擬試卷(3月份)(解析版) 題型:選擇題

(2004•烏魯木齊)函數(shù)y=的自變量x的取值范圍是( )
A.x=1
B.x≠1
C.x>1
D.x<1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2004•烏魯木齊)已知拋物線y=-x2+(m-4)x+2m+4與x軸相交于A(x1,0),B(x2,0)與y軸交于點C,且x1=-2x2(x1<x2),點A關(guān)于y軸的對稱點為D.
(1)確定A,B,C三點的坐標(biāo);
(2)求過B,C,D三點的拋物線的解析式;
(3)若y=3與(2)小題中所求拋物線交于M,N,以MN為一邊,拋物線上任一點P(x,y)為頂點作為平行四邊形,若平行四邊形面積為S,寫出S與P點縱坐標(biāo)y的函數(shù)關(guān)系式;
(4)當(dāng)時,(3)小題中平行四邊形的面積是否有最大值?若有,請求出;若無,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《分式》(02)(解析版) 題型:選擇題

(2004•烏魯木齊)函數(shù)y=的自變量x的取值范圍是( )
A.x=1
B.x≠1
C.x>1
D.x<1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年湖北省黃石市中考數(shù)學(xué)調(diào)研試卷(解析版) 題型:選擇題

(2004•烏魯木齊)函數(shù)y=的自變量x的取值范圍是( )
A.x=1
B.x≠1
C.x>1
D.x<1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年新疆烏魯木齊市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2004•烏魯木齊)如圖所示,點P經(jīng)過點B(0,-2),C(4,0)所在的直線上,且縱坐標(biāo)為-1,點Q在函數(shù)圖象上,若PQ平行于y軸,求出點Q的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案