【題目】如圖以正五邊形ABCDE的頂點(diǎn)A為圓心,AE為半徑作圓弧交BA的延長(zhǎng)線于點(diǎn)A′,再以點(diǎn)B為圓心,BA′為半徑作圓弧交CB的延長(zhǎng)線于B′,依次進(jìn)行.得到螺旋線,再順次連結(jié)EA′,AB′,BC′,CD′,DE′,得到5塊陰影區(qū)域,若記它們的面積分別為S1,S2,S3,S4,S5,且滿足S5S21,則S4S3的值為(  )

A.B.C.D.

【答案】D

【解析】

設(shè)五邊形的邊長(zhǎng)為a,求出各個(gè)陰影部分的面積,根據(jù)S5S21,尋找關(guān)系式,即可解決問(wèn)題.

解:設(shè)五邊形的邊長(zhǎng)為a,則S1a2sin72°

S2a2asin72°,

S3a3asin72°,

S4a4asin72°,

S5a5asin72°

∵S5S21,

∴5πa2πa2a2sin72°1,

πa2a2sin72°1

∴S4S3πa2πa2a2sin72°πa2a2sin72°

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O直徑,C、D為⊙O上不同于AB的兩點(diǎn),∠ABD2BAC.過(guò)點(diǎn)CCEDB,垂足為E,直線ABCE相交于F點(diǎn).

1)求證:CF為⊙O的切線;

2)若CE2,BE1,求BD長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,點(diǎn)C、D、BF在一條直線上,且ABBDDEBD,ABCDCEAF

求證:(1)△ABF≌△CDE;

2CEAF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形ABCD中,E是對(duì)角線AC上一點(diǎn),DE=EC,以AE為直徑的⊙OCD相切于點(diǎn)D,點(diǎn)B在⊙O上,連接OB

1)求證:DE=OE

2)若CDAB,求證:BC是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,OAB邊上的點(diǎn),以O為圓心,OB為半徑的⊙0AC相切于點(diǎn)D,BD平分∠ABC,ADOD,AB12,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c過(guò)等腰RtOABA,B兩點(diǎn),點(diǎn)B在點(diǎn)A的右側(cè),直角頂點(diǎn)A0,3).

1)求bc的值.

2PAB上方拋物線上的一點(diǎn),作PQABOB于點(diǎn)Q,連接AP,是否存在點(diǎn)P,使四邊形APQO是平行四邊形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知的半徑為 4,是圓的直徑,點(diǎn)的切線上的一個(gè)動(dòng)點(diǎn),連接于點(diǎn),弦平行于,連接.

(1)試判斷直線的位置關(guān)系,并說(shuō)明理由;

(2)當(dāng)__________時(shí),四邊形為菱形;

(3)當(dāng)___________時(shí),四邊形為正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C90°PAB上一點(diǎn),且點(diǎn)P不與點(diǎn)A重合,過(guò)點(diǎn)PPEABAC邊于E點(diǎn),點(diǎn)E不與點(diǎn)C重合,若AB10,AC8,設(shè)AP的長(zhǎng)為x,四邊形PECB的周長(zhǎng)為y,

1)試證明:△AEP∽△ABC;

2)求yx之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,OA4,C是射線OA上一點(diǎn),以O為圓心,OA的長(zhǎng)為半徑作使∠AOB152°,P上一點(diǎn),OPAB相交于點(diǎn)D,點(diǎn)P′與P關(guān)于直線OA對(duì)稱,連接CP,

嘗試:

1)點(diǎn)P′在所在的圓   (填“內(nèi)”“上”或“外”);

2AB   

發(fā)現(xiàn):

1PD的最大值為   ;

2)當(dāng),∠OCP28時(shí),判斷CP所在圓的位置關(guān)系探究當(dāng)點(diǎn)P′與AB的距離最大時(shí),求AP的長(zhǎng).(注:sin76°=cos14°=

查看答案和解析>>

同步練習(xí)冊(cè)答案