【題目】1)把下面的證明補充完整

已知:如圖,直線ABCD被直線EF所截,ABCDEG平分∠BEF,FG平分∠DFE,EG、FG交于點G.求證:EGFG

證明:∵ABCD(已知)

∴∠BEF+∠DFE=180°(______),

EG平分∠BEFFG平分∠DFE(已知),

∴______,______(______),

∴∠GEF+∠GFE=(∠BEF+∠DFE)(______),

∴∠GEF+∠GFE=×180°=90°(______),

在△EGF中,∠GEF+∠GFE+∠G=180°(______),

∴∠G=180°-90°=90°(等式性質(zhì)),

EGFG(______).

2)請用文字語言寫出(1)所證命題:______.

【答案】1)見解析;(2)兩條平行線被第三條直線所截,同旁內(nèi)角的平分線互相垂直

【解析】

1)先根據(jù)ABCD求出∠BEF與∠DFE的關(guān)系,再由角平分線的性質(zhì)求出∠FEG+EFG的度數(shù),然后由三角形內(nèi)角和定理即可求出∠EGF的度數(shù),進而可得結(jié)論;

2)根據(jù)(1)的結(jié)論寫出所證命題即可.

1)證明:∵ABCD(已知),

∴∠BEF+DFE=180°(兩直線平行,同旁內(nèi)角互補),

EG平分∠BEFFG平分∠DFE(已知),

∴∠GEF=BEF,∠GFE=DFE(角平分線的定義),

∴∠GEF+GFE=(∠BEF+DFE)(等式的性質(zhì)),

∴∠GEF+GFE=×180°=90°(等量代換),

在△EGF中,∠GEF+GFE+G=180°(三角形的內(nèi)角和定理),

∴∠G=180°90°=90°(等式性質(zhì)),

EGFG 垂直的定義);

2)用文字語言可表示為:兩條平行線被第三條直線所截,同旁內(nèi)角的平分線互相垂直.

故答案為:兩條平行線被第三條直線所截,同旁內(nèi)角的平分線互相垂直.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在矩形ABCD中,O是AC與BD的交點,過點O的直線EF與AB,CD的延長線分別交于點E,F.

(1)求證:△BOE≌△DOF;

(2)當EF與AC滿足什么條件時,四邊形AECF是菱形?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+1經(jīng)過A(﹣1,0),B(1,1)兩點.

(1)求該拋物線的解析式;

(2)閱讀理解:

在同一平面直角坐標系中,直線l1:y=k1x+b1(k1,b1為常數(shù),且k1≠0),直線l2:y=k2x+b2(k2,b2為常數(shù),且k2≠0),若l1l2,則k1k2=﹣1.

解決問題:

①若直線y=2x﹣1與直線y=mx+2互相垂直,則m的值是____;

②拋物線上是否存在點P,使得△PAB是以AB為直角邊的直角三角形?若存在,請求出點P的坐標;若不存在,請說明理由;

(3)M是拋物線上一動點,且在直線AB的上方(不與A,B重合),求點M到直線AB的距離的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4).

(1) 請畫出ABC向左平移5個單位長度后得到的ABC;

(2) 請畫出ABC關(guān)于原點對稱的ABC

(3) 在軸上求作一點P,使PAB的周長最小,請畫出PAB,并直接寫P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點是坐標原點,四邊形是菱形,點的坐標為,點軸的正半軸上,直線軸于點邊交軸于點,連接

1)菱形的邊長是________;

2)求直線的解析式;

3)動點從點出發(fā),沿折線2個單位長度/秒的速度向終點勻速運動,設(shè)的面積為,點的運動時間為秒,求之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 先閱讀下面的材料,再解答下面的問題:如果兩個三角形的形狀相同,則稱這兩個三角形相似.如圖1,△ABC與△DEF形狀相同,則稱△ABC與△DEF相似,記作△ABC∽△DEF.那么,如何說明兩個三角形相似呢?我們可以用“兩角分別相等的三角形相似”加以說明.用數(shù)學語言表示為:

如圖1:在△ABC與△DEF中,∵∠A=∠D,∠B=∠E,∴△ABC∽△DEF

請你利用上述定理解決下面的問題:

1)下列說法:①有一個角為50°的兩個等腰三角形相似;②有一個角為100°的兩個等腰三角形相似;③有一個銳角相等的兩個直角三角形相似;④兩個等邊三角形相似.其中正確的是______(填序號);

2)如圖2,已知ABCD,ADBC相交于點O,試說明△ABO∽△DCO;

3)如圖3,在平行四邊形ABCD中,EDC上一點,連接AEFAE上一點,且∠BFE=∠C,求證:△ABF∽△EAD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,ABCD中,∠BAD與∠ADC的角平分線交于BC邊的點F,∠ABC與∠BCD的角平分線交于AD邊的點H

1)求證:四邊形EFGH為矩形.

2)若HF3,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形網(wǎng)格圖中建立一直角坐標系,一條圓弧經(jīng)過網(wǎng)格點A、BC,請在網(wǎng)格中進行下列操作:

1)請在圖中確定該圓弧所在圓心D點的位置,D點坐標為   

2)連接AD、CD,求⊙D的半徑及扇形DAC的圓心角度數(shù);

3)若扇形DAC是某一個圓錐的側(cè)面展開圖,求該圓錐的底面半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩隊共同承擔一項退耕返林的植樹任務(wù),甲隊單獨完成此項任務(wù)比乙隊單獨完成此項任務(wù)多用天,且甲隊單獨植樹天和乙隊單獨植樹天的工作量相同.

1)甲、乙兩隊單獨完成此項任務(wù)各需多少天?

2)甲、乙兩隊共同植樹天后,乙隊因另有任務(wù)停止植樹,剩下的由甲隊繼續(xù)植樹.為了能夠在規(guī)定時間內(nèi)完成任務(wù),甲隊增加人數(shù),使工作效率提高到原來的倍.那么甲隊至少再單獨施工多少天?

查看答案和解析>>

同步練習冊答案