分析 (1)計(jì)算方程的根的判別式,若△=b2-4ac≥0,則證明方程總有實(shí)數(shù)根;
(2)已知a=6,則a可能是底,也可能是腰,分兩種情況求得b,c的值后,再求出△ABC的周長.注意兩種情況都要用三角形三邊關(guān)系定理進(jìn)行檢驗(yàn).
解答 (1)證明:∵△=b2-4ac=(3k+1)2-4(2k2+2k)=9k2+6k+1-8k2-8k=k2-2k+1=(k-1)2≥0
∴無論k取何值,方程總有實(shí)數(shù)根.
(2)解:①若a=6為底邊,則b,c為腰長,則b=c,則△=0.
∴(k-1)2=0,解得:k=1.
此時(shí)原方程化為x2-4x+4=0,
∴x1=x2=2,即b=c=2.
此時(shí)△ABC三邊為6,2,2不能構(gòu)成三角形,故舍去;
②若a=b為腰,則b,c中一邊為腰,不妨設(shè)b=a=6,
代入方程:62-6(3k+1)+2k2+2k=0,
解得k=3或5,
則原方程化為x2-10x+24=0或x2-16x+60=0,
解得x1=4,x2=6或x1=6,x2=10,
即b=6,c=4,或b=6,c=10,
此時(shí)△ABC三邊為6,6,4或6,6,10能構(gòu)成三角形,
周長為6+6+4=16或6+6+10=22.
點(diǎn)評 本題考查了根的判別式及三角形三邊關(guān)系定理,注意求出三角形的三邊后,要用三邊關(guān)系定理檢驗(yàn),此題很容易漏解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{44}{9}$ | B. | 6 | C. | -6 | D. | 15 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1×10-3米 | B. | 1×10-4米 | C. | 1×10-6米 | D. | 1×10-7米 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com