某商場經(jīng)營某種品牌的玩具,購進(jìn)時的單價是30元,根據(jù)市場調(diào)查:在一段時間內(nèi),銷售單價是40元時,銷售量是600件,而銷售單價每漲1元,就會少售出10件玩具.
(1)不妨設(shè)該種品牌玩具的銷售單價為x元(x>40),請你分別用x的代數(shù)式來表示銷售量y件和銷售該品牌玩具獲得利潤w元,并把結(jié)果填寫在表格中:
銷售單價(元) | x |
銷售量y(件) | |
銷售玩具獲得利潤w(元) | |
解:(1)
(2)﹣10x2+1300x﹣30000=10000銷售單價(元) x 銷售量y(件) 1000﹣10x 銷售玩具獲得利潤w(元) ﹣10x2+1300x﹣30000
解之得:x1=50,x2=80
答:玩具銷售單價為50元或80元時,可獲得10000元銷售利潤。
(3)根據(jù)題意得,解之得:44≤x≤46 。
w=﹣10x2+1300x﹣30000=﹣10(x﹣65)2+12250
∵a=﹣10<0,對稱軸x=65,∴當(dāng)44≤x≤46時,y隨x增大而增大。
∴當(dāng)x=46時,W最大值=8640(元)。
答:商場銷售該品牌玩具獲得的最大利潤為8640元。
解析試題分析:(1)由銷售單價每漲1元,就會少售出10件玩具得
銷售量y=600﹣(x﹣40)x=1000﹣x,銷售利潤w=(1000﹣x)(x﹣30)=﹣10x2+1300x﹣30000。
(2)令﹣10x2+1300x﹣30000=10000,求出x的值即可;
(3)首先求出x的取值范圍,然后把w=﹣10x2+1300x﹣30000轉(zhuǎn)化成y=﹣10(x﹣65)2+12250,結(jié)合x的取值范圍,求出最大利潤。
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,拋物線的頂點為A,與y軸的交點為B,連結(jié)AB,AC⊥AB,交y軸于點C,延長CA到點D,使AD=AC,連結(jié)BD.作AE∥x軸,DE∥y軸.
(1)當(dāng)m=2時,求點B的坐標(biāo);
(2)求DE的長?
(3)①設(shè)點D的坐標(biāo)為(x,y),求y關(guān)于x的函數(shù)關(guān)系式?②過點D作AB的平行線,與第(3)①題確定的函數(shù)圖象的另一個交點為P,當(dāng)m為何值時,以,A,B,D,P為頂點的四邊形是平行四邊形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線交x軸的正半軸于點A,交y軸于點B,將此拋物線向右平移4個單位得拋物線y2,兩條拋物線相交于點C.
(1)請直接寫出拋物線y2的解析式;
(2)若點P是x軸上一動點,且滿足∠CPA=∠OBA,求出所有滿足條件的P點坐標(biāo);
(3)在第四象限內(nèi)拋物線y2上,是否存在點Q,使得△QOC中OC邊上的高h(yuǎn)有最大值?若存在,請求出點Q的坐標(biāo)及h的最大值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線經(jīng)過A(1,0),B(0,3)兩點,對稱軸是x=﹣1.
(1)求拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)動點Q從點O出發(fā),以每秒1個單位長度的速度在線段OA上運動,同時動點M從M從O點出發(fā)以每秒3個單位長度的速度在線段OB上運動,過點Q作x軸的垂線交線段AB于點N,交拋物線于點P,設(shè)運動的時間為t秒.
①當(dāng)t為何值時,四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線經(jīng)過A(﹣2,0),B(﹣3,3)及原點O,頂點為C
(1)求拋物線的函數(shù)解析式.
(2)設(shè)點D在拋物線上,點E在拋物線的對稱軸上,且以AO為邊的四邊形AODE是平行四邊形,求點D的坐標(biāo).
(3)P是拋物線上第一象限內(nèi)的動點,過點P作PM⊥x軸,垂足為M,是否存在點P,使得以P,M,A為頂點的三角形與△BOC相似?若存在,求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
(2013年四川綿陽12分)如圖,二次函數(shù)y=ax2+bx+c的圖象的頂點C的坐標(biāo)為(0,﹣2),交x軸于A、B兩點,其中A(﹣1,0),直線l:x=m(m>1)與x軸交于D.
(1)求二次函數(shù)的解析式和B的坐標(biāo);
(2)在直線l上找點P(P在第一象限),使得以P、D、B為頂點的三角形與以B、C、O為頂點的三角形相似,求點P的坐標(biāo)(用含m的代數(shù)式表示);
(3)在(2)成立的條件下,在拋物線上是否存在第一象限內(nèi)的點Q,使△BPQ是以P為直角頂點的等腰直角三角形?如果存在,請求出點Q的坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線與x軸交于A(﹣1,0),B(3,0)兩點,與y軸交于點C(0,3).
(1)求拋物線的解析式;
(2)設(shè)拋物線的頂點為D,在其對稱軸的右側(cè)的拋物線上是否存在點P,使得△PDC是等腰三角形?若存在,求出符合條件的點P的坐標(biāo);若不存在,請說明理由;
(3)點M是拋物線上一點,以B,C,D,M為頂點的四邊形是直角梯形,試求出點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c交y軸于點C(0,4),對稱軸x=2與x軸交于點D,頂點為M,且DM=OC+OD.
(1)求該拋物線的解析式;
(2)設(shè)點P(x,y)是第一象限內(nèi)該拋物線上的一個動點,△PCD的面積為S,求S關(guān)于x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)在(2)的條件下,若經(jīng)過點P的直線PE與y軸交于點E,是否存在以O(shè)、P、E為頂點的三角形與△OPD全等?若存在,請求出直線PE的解析式;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線交y軸于點A,交x軸正半軸于點B.
(1)求直線AB對應(yīng)的函數(shù)關(guān)系式;
(2)有一寬度為1的直尺平行于x軸,在點A、B之間平行移動,直尺兩長邊所在直線被直線AB和拋物線截得兩線段MN、PQ,設(shè)M點的橫坐標(biāo)為m,且0<m<3.試比較線段MN與PQ的大。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com