【題目】(1)計(jì)算:[(x+y)2﹣(x﹣y)2]÷(2xy).
(2)解方程:
(3)因式分解:xy2﹣4x
【答案】(1)2;(2)﹣28;(3)x(y+2)(y﹣2).
【解析】
(1)根據(jù)整式的混合運(yùn)算順序和運(yùn)算法則計(jì)算可得;
(2)先去分母化分式方程為整式方程,解之求得x的值,再檢驗(yàn)即可得;
(3)先提取公因式x,再利用平方差公式分解可得.
解:(1)原式=(x2+2xy+y2﹣x2+2xy﹣y2)÷(2xy)
=4xy÷2xy
=2;
(2)兩邊都乘以(x+4)(x﹣4),得:(x+4)2﹣6(x﹣4)=(x+4)(x﹣4),
解得:x=﹣28,
經(jīng)檢驗(yàn):x=﹣28是原分式方程的解;
(3)原式=x(y2﹣4)=x(y+2)(y﹣2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,兩個(gè)形狀、大小完全相同的含有30°、60°的直角三角板如圖①放置,PA、PB與直線MN重合,且三角板PAC、三角板PBD均可繞點(diǎn)P逆時(shí)針旋轉(zhuǎn).
(1)直接寫出∠DPC的度數(shù).
(2)如圖②,在圖①基礎(chǔ)上,若三角板PAC的邊PA從PN處開(kāi)始繞點(diǎn)P逆時(shí)針旋轉(zhuǎn),轉(zhuǎn)速為5°/秒,同時(shí)三角板PBD的邊PB從PM處開(kāi)始繞點(diǎn)P逆時(shí)針旋轉(zhuǎn),轉(zhuǎn)速為1°/秒,(當(dāng)PA轉(zhuǎn)到與PM重合時(shí),兩三角板都停止轉(zhuǎn)動(dòng)),在旋轉(zhuǎn)過(guò)程中,當(dāng)PC與PB重合時(shí),求旋轉(zhuǎn)的時(shí)間是多少?
(3)在(2)的條件下,PC、PB、PD三條射線中,當(dāng)其中一條射線平分另兩條射線的夾角時(shí),請(qǐng)直接寫出旋轉(zhuǎn)的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,O為直線AB上一點(diǎn),過(guò)點(diǎn)O作射線OC,∠AOC=30°,將一直角三角板 (∠M=30°)的直角頂點(diǎn)放在點(diǎn)O處,一邊ON在射線OA上,另一邊OM與OC都在直線AB的上方,將如圖中的三角板繞點(diǎn)O以每秒3°的速度沿順時(shí)針?lè)较蛐D(zhuǎn)一周。
(1)幾秒后ON與OC重合?
(2)如圖,經(jīng)過(guò)t秒后,MN∥AB,求此時(shí)t的值。
(3)若三角板在轉(zhuǎn)動(dòng)的同時(shí),射線OC也繞O點(diǎn)以每秒6°的速度沿順時(shí)針?lè)较蛐D(zhuǎn)一周,那么經(jīng)過(guò)多長(zhǎng)時(shí)間OC與OM重合?請(qǐng)畫(huà)圖并說(shuō)明理由。
(4)在(3)的條件下,求經(jīng)過(guò)多長(zhǎng)時(shí)間OC平分∠MOB?請(qǐng)畫(huà)圖并說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+1經(jīng)過(guò)A(﹣1,0),B(1,1)兩點(diǎn).
(1)求該拋物線的解析式;
(2)閱讀理解:
在同一平面直角坐標(biāo)系中,直線l1:y=k1x+b1(k1 , b1為常數(shù),且k1≠0),直線l2:y=k2x+b2(k2 , b2為常數(shù),且k2≠0),若l1⊥l2 , 則k1k2=﹣1.
解決問(wèn)題:
①若直線y=3x﹣1與直線y=mx+2互相垂直,求m的值;
②拋物線上是否存在點(diǎn)P,使得△PAB是以AB為直角邊的直角三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)M是拋物線上一動(dòng)點(diǎn),且在直線AB的上方(不與A,B重合),求點(diǎn)M到直線AB的距離的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O中,直徑CD⊥弦AB于E,AM⊥BC于M,交CD于N,連AD.
(1)求證:AD=AN;
(2)若AB=4 ,ON=1,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一副三角板按如圖1方式拼接在一起,其中邊OA、OC與直線EF重合,,
圖1中______
如圖2,三角板COD固定不動(dòng),將三角板AOB繞著點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn)一個(gè)角度,在轉(zhuǎn)動(dòng)過(guò)程中兩塊三角板都在直線EF的上方:
當(dāng)OB平分OA、OC、OD其中的兩邊組成的角時(shí),求滿足要求的所有旋轉(zhuǎn)角度的值;
是否存在?若存在,求此時(shí)的的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠AOB內(nèi)部有三條射線,OE平分∠AOD,OC平分∠BOD.
(1)若∠AOB=90°,求∠EOC的度數(shù);
(2)若∠AOB=α,求∠EOC的度數(shù);
(3)如果將題中“平分”的條件改為∠EOA=∠AOD,∠DOC=∠DOB且∠DOE:∠DOC=4:3,∠AOB=90°,求∠EOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,矩形ABCD的邊AD=3,A(,0),B(2,0),直線y=kx+b經(jīng)過(guò)B,D兩點(diǎn).
(1)求直線y=kx+b的解析式;
(2)將直線y=kx+b平移,若它與矩形有公共點(diǎn),直接寫出b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】受寒潮影響,淘寶網(wǎng)上的電熱取暖器銷售火旺,某電商銷售每臺(tái)成本價(jià)分別為200元、170元的A、B兩種型號(hào)的電熱取暖器,下表是近兩天的銷售情況:
銷售時(shí)段 | 銷售數(shù)量 | 銷售收入 | |
A種型號(hào) | B種型號(hào) | ||
第一天 | 3臺(tái) | 5臺(tái) | 1800元 |
第二天 | 4臺(tái) | 10臺(tái) | 3100元 |
(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)=銷售收入﹣進(jìn)貨成本)
(1)求A,B兩種型號(hào)的電熱取暖器的銷售單價(jià);
(2)若電商準(zhǔn)備用不多于5400元的金額再采購(gòu)這兩種型號(hào)的電熱取暖器共30臺(tái),求A種型號(hào)的電熱取暖器最多能采購(gòu)多少臺(tái)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com