(2007•金華)如圖所示為一彎形管道,其中心線是一段圓弧.已知半徑OA=60cm,∠AOB=108°,則管道的長度(即的長)為    cm.(結果保留π)
【答案】分析:本題的關鍵是利用弧長公式計算弧長.
解答:解:=36πcm.
點評:本題的關鍵是利用弧長公式計算弧長.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2007•金華)如圖1,在平面直角坐標系中,已知點A(0,4),點B在x正半軸上,且∠ABO=30度.動點P在線段AB上從點A向點B以每秒個單位的速度運動,設運動時間為t秒.在x軸上取兩點M,N作等邊△PMN.
(1)求直線AB的解析式;
(2)求等邊△PMN的邊長(用t的代數(shù)式表示),并求出當?shù)冗叀鱌MN的頂點M運動到與原點O重合時t的值;
(3)如果取OB的中點D,以OD為邊在Rt△AOB內部作如圖2所示的矩形ODCE,點C在線段AB上.設等邊△PMN和矩形ODCE重疊部分的面積為S,請求出當0≤t≤2秒時S與t的函數(shù)關系式,并求出S的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年湖北省黃岡市數(shù)學中考精品試卷之三(解析版) 題型:解答題

(2007•金華)如圖1,在平面直角坐標系中,已知點A(0,4),點B在x正半軸上,且∠ABO=30度.動點P在線段AB上從點A向點B以每秒個單位的速度運動,設運動時間為t秒.在x軸上取兩點M,N作等邊△PMN.
(1)求直線AB的解析式;
(2)求等邊△PMN的邊長(用t的代數(shù)式表示),并求出當?shù)冗叀鱌MN的頂點M運動到與原點O重合時t的值;
(3)如果取OB的中點D,以OD為邊在Rt△AOB內部作如圖2所示的矩形ODCE,點C在線段AB上.設等邊△PMN和矩形ODCE重疊部分的面積為S,請求出當0≤t≤2秒時S與t的函數(shù)關系式,并求出S的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年江西省中考數(shù)學仿真模擬試卷(解析版) 題型:解答題

(2007•金華)如圖1,在平面直角坐標系中,已知點A(0,4),點B在x正半軸上,且∠ABO=30度.動點P在線段AB上從點A向點B以每秒個單位的速度運動,設運動時間為t秒.在x軸上取兩點M,N作等邊△PMN.
(1)求直線AB的解析式;
(2)求等邊△PMN的邊長(用t的代數(shù)式表示),并求出當?shù)冗叀鱌MN的頂點M運動到與原點O重合時t的值;
(3)如果取OB的中點D,以OD為邊在Rt△AOB內部作如圖2所示的矩形ODCE,點C在線段AB上.設等邊△PMN和矩形ODCE重疊部分的面積為S,請求出當0≤t≤2秒時S與t的函數(shù)關系式,并求出S的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年河北省中考數(shù)學模擬試卷(四)(解析版) 題型:解答題

(2007•金華)如圖1,在平面直角坐標系中,已知點A(0,4),點B在x正半軸上,且∠ABO=30度.動點P在線段AB上從點A向點B以每秒個單位的速度運動,設運動時間為t秒.在x軸上取兩點M,N作等邊△PMN.
(1)求直線AB的解析式;
(2)求等邊△PMN的邊長(用t的代數(shù)式表示),并求出當?shù)冗叀鱌MN的頂點M運動到與原點O重合時t的值;
(3)如果取OB的中點D,以OD為邊在Rt△AOB內部作如圖2所示的矩形ODCE,點C在線段AB上.設等邊△PMN和矩形ODCE重疊部分的面積為S,請求出當0≤t≤2秒時S與t的函數(shù)關系式,并求出S的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年浙江省金華市中考數(shù)學試卷(解析版) 題型:解答題

(2007•金華)如圖1,在平面直角坐標系中,已知點A(0,4),點B在x正半軸上,且∠ABO=30度.動點P在線段AB上從點A向點B以每秒個單位的速度運動,設運動時間為t秒.在x軸上取兩點M,N作等邊△PMN.
(1)求直線AB的解析式;
(2)求等邊△PMN的邊長(用t的代數(shù)式表示),并求出當?shù)冗叀鱌MN的頂點M運動到與原點O重合時t的值;
(3)如果取OB的中點D,以OD為邊在Rt△AOB內部作如圖2所示的矩形ODCE,點C在線段AB上.設等邊△PMN和矩形ODCE重疊部分的面積為S,請求出當0≤t≤2秒時S與t的函數(shù)關系式,并求出S的最大值.

查看答案和解析>>

同步練習冊答案