用適當?shù)姆椒ń庀铝蟹匠?br />(1)(y-3)2-5=0;
(2)3(x-3)2+x(x-3)=0;
(3)(x-1)(x+2)=54;
(4)(2x+1)2-4(2x+1)+4=0.
【答案】
分析:仔細觀察方程,確定解方程的方法:
(1)把常數(shù)項5移到等號右邊,利用直接開平方式即可求解;
(2)等號左邊可以提取公因式,因而應用因式分解法容易求解;
(3)去括號、移項、合并后用因式分解法;
(4)把2x+1看作一個整體為y,用換元法,求出y后,進而求x.
解答:解:(1)移項得(y-3)
2=5,
解得y=
.
(2)先提取公因式(x-3)得,(x-3)(4x-9)=0,
解得x
1=3,x
2=
.
(3)方程(x-1)(x+2)=54
去括號,移項得x
2+x-56=0,
因式分解得(x+8)(x-7)=0,
解得x
1=-8,x
2=7.
(4)把2x+1看作一個整體為y,得y
2-4y+4=0,
利用完全平方公式得(y-2)
2=0,
解得y=2,即2x+1=2,
解得x=
.
點評:本題考查了一元二次方程的解法.解一元二次方程常用的方法有直接開平方法,配方法,公式法,因式分解法,要根據方程的提點靈活選用合適的方法.