【題目】科技館是少年兒童節(jié)假日游玩的樂園.

如圖所示,圖中點的橫坐標x表示科技館從830開門后經(jīng)過的時間(分鐘),縱坐標y表示到達科技館的總人數(shù).圖中曲線對應的函數(shù)解析式為y=,1000之后來的游客較少可忽略不計.

1)請寫出圖中曲線對應的函數(shù)解析式;

2)為保證科技館內(nèi)游客的游玩質(zhì)量,館內(nèi)人數(shù)不超過684人,后來的人在館外休息區(qū)等待.從1030開始到1200館內(nèi)陸續(xù)有人離館,平均每分鐘離館4人,直到館內(nèi)人數(shù)減少到624人時,館外等待的游客可全部進入.請問館外游客最多等待多少分鐘?

【答案】(1)y=;(2) 館外游客最多等待57分鐘.

【解析】試題分析

解(1)由圖象可知,300=a×302,解得a=

n=700,b×30902+700=300,解得b=,

y=

2)由題意﹣x902+700=684,

解得x=78,

,

15+30+90﹣78=57分鐘

所以,館外游客最多等待57分鐘.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,,.繞著邊的中點旋轉(zhuǎn),,分別交線段于點.

1)觀察:①如圖2、圖3,當時,________(填“”,“”或“”)

②如圖4,當時,________(填“”或“”)

2)猜想:如圖1,當時,________,證明你所得到的結論.

3)如果,請求出的度數(shù)和的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場經(jīng)銷甲、乙兩種商品,甲種商品每件進價15元,售價20元;乙種商品每件進價35元,售價45元.

1)若該商場同時購進甲、乙兩種商品共100件恰好用去2700元,求能購進甲、乙兩種商品各多少件?

2)該商場為使甲、乙兩種商品共100件的總利潤(利潤=售價-進價)不少于750元,且甲商品的件數(shù)不能低于48件,請你幫忙求出該商場有幾種進貨方案?

3)在(2)的基礎上,商場預備用2500元資金來進貨.若商場選擇能使總利潤最大的進貨方案,試判斷商場預備的資金是否夠?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,用三種大小不同的六個正方形和一個缺角的長方形拼成長方形ABCD,其中GH=2cm,GK=2cm,設BF=x cm,

1)用含x的代數(shù)式表示CM=_________cm,DM=_________cm.

2)求長方形ABCD的周長(用含有x的代數(shù)式表示),并求x=3時,長方形的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】目前節(jié)能燈在城市已基本普及,今年山東省面向縣級及農(nóng)村地區(qū)推廣節(jié)能燈,為響應號召,某商場計劃購進甲、乙兩種節(jié)能燈共1200只,這兩種節(jié)能燈的進價、售價如下表:

進價(/)

售價(/)

25

30

45

60

(1)如何進貨,進貨款恰好為46000元?

(2)如何進貨,商場銷售完節(jié)能燈時獲利最多且不超過進貨價的30%,此時利潤為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直角坐標系中,已知點A,B的坐標是(a,0),(b,0).a(chǎn),b滿足方程組,C為y軸正半軸上一點,且SABC=6.

(1)求A,B,C三點的坐標;

(2)是否存在點P(t,t),使SPAB=SABC?若存在,請求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,點AB為反比例函數(shù)的圖像上兩點,A點的橫坐標與B點的縱坐標均為1,將的圖像繞原點O順時針旋轉(zhuǎn)90°,A點的對應點為A’B點的對應點為B’

1)點A’的坐標是   ,點B’的坐標是  

2)在x軸上取一點P,使得PA+PB的值最小,直接寫出點P的坐標. 此時在反比例函數(shù)的圖像上是否存在一點Q,使A’B’Q的面積與PAB的面積相等,若存在,求出點Q的橫坐標;若不存在,請說明理由;

3)連接AB’,動點MA點出發(fā)沿線段AB’以每秒1個單位長度的速度向終點B’運動;動點N同時從B’點出發(fā)沿線段B’A’以每秒1個單位長度的速度向終點A’運動.當其中一個點停止運動時,另一個點也隨之停止運動.設運動的時間為t秒,試探究:是否存在使MNB’為等腰直角三角形的t值.若存在,求出t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知∠AOB90°,OC為一條射線,OE,OF分別平分∠AOC,∠BOC,那么∠EOF 的度數(shù)為_____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD,∠BAD=BCD=900,連結AC,若AC=10,則四邊形ABCD的面積為_____

查看答案和解析>>

同步練習冊答案