【題目】如圖,在△ABC中,點D是BC邊上的一點,∠B=50°,∠BAD=30°,將△ABD沿AD折疊得到△AED,AE與BC交于點F.
(1)填空:∠AFC=______度;
(2)求∠EDF的度數(shù).
【答案】(1)1100;(2)200
【解析】
(1)根據(jù)折疊的特點得出∠BAD=∠DAF,再根據(jù)三角形一個外角等于它不相鄰兩個內(nèi)角之和,即可得出答案;
(2)根據(jù)已知求出∠ADB的值,再根據(jù)△ABD沿AD折疊得到△AED,得出∠ADE=∠ADB,最后根據(jù)∠EDF=∠EDA+∠BDA﹣∠BDF,即可得出答案.
解:(1)∵△ABD沿AD折疊得到△AED,
∴∠BAD=∠DAF,
∵∠B=50°∠BAD=30°,
∴∠AFC=∠B+∠BAD+∠DAF=110°;
故答案為110.
(2)∵∠B=50°,∠BAD=30°,
∴∠ADB=180°﹣50°﹣30°=100°,
∵△ABD沿AD折疊得到△AED,
∴∠ADE=∠ADB=100°,
∴∠EDF=∠EDA+∠BDA﹣∠BDF=100°+100°﹣180°=20°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點C與某建筑物底端B相距306米(點C與點B在同一水平面上),某同學從點C出發(fā),沿同一剖面的斜坡CD行走195米至坡頂D處,斜坡CD的坡度(或坡比)i=1:2.4,在D處測得該建筑物頂端A的俯角為20°,則建筑物AB的高度約為(精確到0.1米,參考數(shù)據(jù):sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)( )
A.29.1米
B.31.9米
C.45.9米
D.95.9米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學九(1)班為了了解全班學生喜歡球類活動的情況,采取全面調(diào)查的方法,從足球、乒乓球、籃球、排球等四個方面調(diào)查了全班學生的興趣愛好,根據(jù)調(diào)查的結(jié)果組建了4個興趣小組,并繪制成如圖所示的兩幅不完整的統(tǒng)計圖(如圖①,②,要求每位學生只能選擇一種自己喜歡的球類),請你根據(jù)圖中提供的信息解答下列問題:
(1)九(1)班的學生人數(shù)為__ , 并把條形統(tǒng)計圖補充完整;
(2)扇形統(tǒng)計圖中m=10 , n=20 , 表示“足球”的扇形的圓心角是多少度;
(3)排球興趣小組4名學生中有3男1女,現(xiàn)在打算從中隨機選出2名學生參加學校的排球隊,請用列表或畫樹狀圖的方法求選出的2名學生恰好是1男1女的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】請完成以下問題:
圖1 圖2
(1)如圖1, ,弦 與半徑 平行,求證: 是⊙ 的直徑;
(2)如圖2, 是⊙ 的直徑,弦 與半徑 平行.已知圓的半徑為 , , ,求 與 的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O中,AB是⊙O的直徑,AB=10,,點E是點D關(guān)于AB的對稱點,M是AB上的一動點,下列結(jié)論:①∠BOE=60°;②∠CED=∠DOB;③DM⊥CE;④CM+DM的最小值是10,上述結(jié)論中正確的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如何求tan75°的值?按下列方法作圖可解決問題,如圖,在Rt△ABC中,AC=k,∠ACB=90°,∠ABC=30°,延長CB至點M,在射線BM上截取線段BD,使BD=AB,連接AD,依據(jù)此圖可求得tan75°的值為( )
A.2
B.2+
C.1+
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,sinA= ,BC=8,D是AB中點,過點B作直線CD的垂線,垂足為點E.
(1)求線段CD的長;
(2)求cos∠ABE的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,O為原點,點A(0,8),點B(m,0),且m>0.把△AOB繞點A逆時針旋轉(zhuǎn)90°,得△ACD,點O,B旋轉(zhuǎn)后的對應(yīng)點為C,D,
(1)點C的坐標為 ;
(2)①設(shè)△BCD的面積為S,用含m的式子表示S,并寫出m的取值范圍;
②當S=6時,求點B的坐標(直接寫出結(jié)果即可).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com